Page 306 - DMTH401_REAL ANALYSIS
P. 306

Real Analysis




                    Notes          Therefore,
                                         1    p  p  p     1
                                   1 £  £   i.e.   £  £  -   ,
                                         4    6  6   6      k 2
                                                         1 -
                                                            4
                                             1
                                          p  2        1            p   1
                                   and; so,   £  ò              dx £       .
                                          6  0 é ë (1 x )(1 k x )ù û  6  1 -  k 2
                                                    2
                                                          2
                                                            2
                                                  -
                                                        -
                                                                         4
                                                           q
                                                            sinx    2
                                          Example: Prove that   ò  dx £  ,  if q > p > 0.
                                                           p  x     p
                                                            1
                                   Solution: Let  f(x) =  sin x, (x) =  ,x [p,q].  Being continuous, these functions are integrable in
                                                               
                                                      
                                                            x
                                   [p, q]. By Bonnet form of second mean value theorem, there is a point [p, q] such that
                                   q              
                                   ò f(x) (x) dx =  (p) f(x) dx
                                                  ò
                                       
                                   p              a
                                      q  sinx   1        1
                                   i.e.,   ò  dx =  ò sinx dx =  (cosp cos ).
                                                                    
                                                                -
                                      p  x      p  p      P
                                         q
                                           sinx    1              2
                                                              
                                   Hence   ò  dx £  é ë  cosp +  cos ù £
                                                                û
                                         p  x      P              P
                                   Self Assessment
                                   Fill in the blanks:
                                   1.  Let f : [a, b]  R be a continuous function. Then there exists c  [a, b] such that .......................
                                   2.  Since f is continuous in [a, b], it attains its bounds and it also attains every value between
                                       the ...........................
                                   3.  The geometrical interpretation of the theorem is that for a ....................................... function
                                       f, the area between f, the lines x = a, x = b and the x-axis can be taken as the area of a
                                       rectangle having one side of length (b-a) and the other f(c) for some c  [a, b].
                                   4.  If f and g are differentiable functions Qn [a,b] such that the derivatives f' and g' are both
                                       ................................ on [a, b], then
                                                      b                          b
                                                     ò f(x) g' dx [f(b) g(b) f(a) g(b)]-  ò f'(x) g(x) dx.
                                                                       -
                                                              =
                                                      a                          a
                                   5.  Let f and g be any two functions integrable in  a,b  and g be .............................. then there
                                       exists  c   a,b  such that

                                                         b                c           b
                                                                                +
                                                                          ò
                                                         ò f(x) g(x) dx =  g(a) f(x) dx g(b) f(x) dx
                                                                                     ò
                                                         a                a           c


          300                               LOVELY PROFESSIONAL UNIVERSITY
   301   302   303   304   305   306   307   308   309   310   311