Page 181 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 181

Complex Analysis and Differential Geometry




                    Notes                                    1       j,
                                   10.  Prove that definition       for i    is invariant under a change of basis, if we interpret
                                                         i
                                                         j
                                                             0  for i  j
                                                                                                     1  for i  j,
                                       the Kronecker symbol as a tensor. Show that both definitions in     d  
                                                                                              ij
                                                                                                 ij
                                                                                                     0  for i   j
                                       are not invariant under a change of basis.
                                                                                          3
                                                              
                                   11.  Lower index i of tensor     1  for i   j,   by means of  X ...p...  g X ....s.... .  What tensorial
                                                            i
                                                                                     .........
                                                                                        
                                                                                               ..........
                                                                                             ps
                                                            j
                                                               0  for i   j             s 1
                                                                                          
                                                                                                 i   1  for i   j,
                                       object do you get as a result of this operation? Likewise, raise index J in      .
                                                                                                 j
                                                                                                    0  for i   j
                                                                               3  3  3
                                   12.  Prove  that  the  vector a  with components  a   g  ijk x y   coincides with  cross
                                                                            r
                                                                                          j
                                                                                            k
                                                                                      ri
                                                                               i 1 j 1 k 1
                                                                                 
                                                                                    
                                                                               
                                       product of vectors x and y, i.e. a = [x, y].
                                   Answers: Self  Assessment
                                   1.  basis-dependent                    2.   bilinear  form.
                                   3.  contravariant index.               4.   transformation  rules
                                   15.16 Further Readings
                                   Books       Ahelfors, D.V. : Complex Analysis
                                               Conway, J.B. : Function of one complex variable

                                               Pati, T. : Functions of complex variable
                                               Shanti Narain : Theory of function of a complex Variable
                                               Tichmarsh, E.C. : The theory of functions
                                               H.S. Kasana : Complex Variables theory and applications

                                               P.K. Banerji : Complex Analysis
                                               Serge Lang : Complex Analysis
                                               H. Lass : Vector & Tensor Analysis
                                               Shanti Narayan : Tensor Analysis

                                               C.E. Weatherburn : Differential Geometry
                                               T.J. Wilemore : Introduction to Differential Geometry
                                               Bansi Lal : Differential Geometry.












          174                               LOVELY PROFESSIONAL UNIVERSITY
   176   177   178   179   180   181   182   183   184   185   186