Page 278 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 278

Unit 22: Bertrand Curves





                                  r                                                             Notes
                        k (s) =        .
                         3
                                  2
                                4
                                r a  b 2
          We take constant , ,  and  defined by
                                                2
                                             2
                                           2
                                 2
                                         
                            =   (r aA   bB) (r a   b ) ,
                                        2
                                      4
                                     r a   b 2
                                           2
                                 2
                                    
                                        
                            =   (r aB bA) (r  1)ab ,
                                       2
                                      4
                                     r a  b 2
                               2
                               r aA  bB
                            =         ,
                              r(aB bA)
                                  
                                4
                            =  r aA  bB  .
                               2
                              r (aB bA)
                                   
          Here, A and B are positive numbers such that aB  bA. Then it is trivial that (a), (b), (c) and (d)
          hold. Therefore,  the curve  C is  a Bertrand curve in E , and its Bertrand mate curve  C  in  E 4
                                                      4
                  4

          (c : L  E ) is given by
                                                  r       
                                           Acos        s  
                                                  2
                                                    2
                                                r A  B 2  
                                                         
                                                  r       
                                           Asin        s  
                                                  2
                                                    2
                                                r A   B 2  
                                     c(s)               
                                                  1       
                                           Bcos        s  
                                                    2
                                                r A  B 2  
                                                  2
                                                         
                                                  r       
                                           Bsin        s  
                                                r A  B 2   
                                                    2
                                                  2
                                                         
          for all  s  L,  where  s  is the arc-length parameter of C,  and a regular C -map  : L   L  is given
                                                                   
          by
                                            2
                                          2
                                         r A  B 2
                                 s   (s)      s        ( s L).
                                                          
                                                            
                                            2
                                           2
                                          r a  b 2
          Remark: If a  + b  = 1, then the curve C in E  is a leaf of Hopf r-foliation on S  ([6], [8]).
                        2
                                                                       3
                    2
                                             4
                                           LOVELY PROFESSIONAL UNIVERSITY                                  271
   273   274   275   276   277   278   279   280   281   282   283