Page 275 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 275

Complex Analysis and Differential Geometry




                    Notes                                1    dt(s)
                                                     =       .
                                                       k ( (s))  ds  s  (s)
                                                         
                                                        1
                                                                               1
                                                     =
                                                                    2
                                                                            2
                                                                                    
                                                                               
                                                          
                                                              
                                                                                              
                                                         ( k (s) k (s))  (k (s)) . {( k (s) k (s) . n (s) k (s) . n (s)}
                                                                                 1
                                                           1
                                                                        3
                                                                 2
                                                                                      2
                                                                                                3
                                                                                                     3
                                                                                           1
                                   for all s  L. Thus, we can put
                                              n ( (s))  = (cos (s)) . n (s) + (sin (s)) . n (s),          (17)
                                                 
                                               1
                                                                1
                                                                             3
                                   where
                                                                  
                                               cos (s) =     k (s) k (s)                                (18.1)
                                                                    2
                                                               1
                                                                    2
                                                              
                                                          
                                                         ( k (s) k (s))  (k (s)) 2
                                                                        3
                                                           1
                                                                 2
                                                                k (s)
                                               sin (s) =        3            0                          (18.2)
                                                                    2
                                                         ( k (s) k (s))  (k (s)) 2
                                                              
                                                          
                                                                        3
                                                           1
                                                                 2
                                   for all s  L. Here,  is a C -function on L. Differentiating (17) with respect to s and using the
                                                        
                                   Frenet equations, we obtain
                                        dn (s)                      dcos (s)
                                                                        
                                                           
                                    '(s) .  1     k (s)(cos (s)) . t(s)   . n (s)
                                         ds  s  (s)  1              ds     1
                                                                                   dsin (s)
                                                                                       
                                                                        
                                                           {k (s)(cos (s)) k (s)(sin (s))} . n (s)   ds  . n (s)
                                                                
                                                            
                                                                  3
                                                                                            3
                                                      2
                                                                               2
                                   Differentiating (c) with respect to s, we obtain
                                                       (gk (s) k (s)k (s) ( k (s) k (s))k (s) 0.            (19)
                                                                                   '
                                                               '
                                                         '
                                                                             
                                                                                       
                                                                      
                                                                        
                                                            
                                                                               2
                                                                                   3
                                                                   3
                                                                          1
                                                         1
                                                               2
                                   Differentiating (18.1) and (18.2) with respect to s and using (4.19), we obtain
                                                             dcos (s)   0,  dsin (s)  0,
                                                                 
                                                                               
                                                                ds           ds
                                   that is,  is a constant function on L with value  . Thus, we obtain
                                                                         0
                                              k (s) k (s)    = cos  ,                                   (18.1)’
                                                 
                                              1
                                                    2
                                                    2
                                         ( k (s) k (s))  (k (s)) 2  0
                                         
                                              
                                           1
                                                 2
                                                        3
                                                k (s)
                                                 3
                                                                   0
                                                    2
                                         
                                              
                                         ( k (s) k (s))  (k (s)) 2   = sin  0.                        (18.2)’
                                           1
                                                 2
                                                        3
                                   From (17), it holds
                                                       n ( (s))  = (cos  ) . n (s) + (sin  ) . n (s).     (20)
                                                         
                                                        1
                                                                                0
                                                                       1
                                                                                    3
                                                                    0
                                   Thus we obtain, by (15) and (16),
                                                                           2
                                                                
                                                                     
                                                               ( k (s) k (s))  (k (s)) 2
                                                                                          
                                                    
                                              
                                           k ( (s)) . t( (s))    1    2       3         . ( . t(s)  n (s)),
                                                                                                  2
                                             1
                                                                2
                                                                                2
                                                                          
                                                                      
                                                           '(s)(   1) ( k (s) k (s))  (k (s)) 2
                                                                                    3
                                                                       1
                                                                             2
          268                               LOVELY PROFESSIONAL UNIVERSITY
   270   271   272   273   274   275   276   277   278   279   280