Page 273 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 273

Complex Analysis and Differential Geometry




                    Notes          for all s  L. From the above fact, it holds

                                                              dcos (s)   dsin (s)
                                                                  
                                                                             
                                                                ds     0,   ds    0,
                                   that is,  is a constant function on L with value  . Let  = (cos  ) (sin  )  be a constant number.
                                                                                            –1
                                                                         0
                                                                                     0
                                                                                           0
                                   Then (10.1) and (10.2) imply
                                                             k (s) – k (s) = k (s)  ( s L),
                                                                                
                                                                              
                                                                          3
                                                                    2
                                                               1
                                   that is, we obtain the relation (c).
                                   Moreover, we obtain
                                                
                                          
                                                                   
                                                            
                                    '(s)k ( (s)) . t( (s))   '(s)k ( (s)) . n ( (s))
                                                                  2
                                                          2
                                         1
                                                         =  k (s)(cos (s) . t(s) {k (s)(cos (s)) k (s)(sin (s))} . n (s)
                                                                                   
                                                                                       
                                                                                                
                                                                   
                                                           
                                                                          
                                                                                          3
                                                                             2
                                                                                                      2
                                                             1
                                   By the above equality and (3), we obtain
                                                 
                                                             
                                    '(s)k ( (s)) . n ( (s))   '(s)k ( (s)) . t( (s))
                                                                   
                                          
                                         2
                                                           1
                                                2
                                                           k (s)(cos 0 ) . t(s) {k (s)(cos 0 ) k (s)(sin 0 )} . n (s)
                                                                        
                                                                                    
                                                                           2
                                                                                                  2
                                                                                       3
                                                            1
                                                         = ( '(s)) {k ( (s))} . {A(s) . t(s) B(s) . n (s)},   2  1     1    2
                                   where
                                                             
                                                                               
                                   A(s) =  { '(s)k ( (s))} (1  1    2    k (s)) k (s)( k (s)   k (s))( k (s) k (s))
                                                                   
                                                                                    
                                                         1
                                                                     2
                                                                           3
                                                               1
                                                                                       2
                                                                                 1
                                                                   
                                                                 
                                                                                     
                                   B(s) =  { '(s)k ( (s))} ( k (s))  1    2    2    k (s)) ( k (s)   k (s))( k (s) k (s))k (s)
                                                                                
                                                                     2
                                                                                  1
                                                                                            2
                                                                                       2
                                                                            3
                                                             3
                                          ( k (s)   k (s))(k (s)) 2
                                          
                                                   3
                                             2
                                                        3
                                   for all s  L. From (b) and (8), A(s) and B(s) are rewritten as:
                                                                                                   2
                                           2
                                                                                    2
                                                                                           2
                                                                2
                                               1
                                               
                                   A(s) =  (   1) ( k (s)   k (s)) [(  1)k (s)k (s)   {(k (s))   (k (s))  (k (s)) }]
                                                             
                                        
                                                 
                                                                         2
                                                   2
                                                         3
                                                                                1
                                                                                        2
                                                                     1
                                                                                               3
                                               1
                                                                                           2
                                                                                                  2
                                                                2
                                          2
                                                                                   2
                                              
                                        
                                   B(s) =  (  1) ( k (s)   k (s)) [(   1)k (s)k (s)   {(k (s))  (k (s))  (k (s)) }].
                                                
                                                            
                                                                                       2
                                                         3
                                                                        2
                                                                                               3
                                                                                1
                                                                     1
                                                  2
                                   Since  '(s)k ( (s)) . n ( (s))  2    2      0  for all s  L, it holds
                                                                          2
                                                                                         2
                                                      2
                                                                                 2
                                                     (  1)k (s)k (s)   {(k (s))   (k (s))   (k (s)) }  0
                                                                                     3
                                                                      1
                                                               2
                                                           1
                                                                              2
                                   for all s  L. Thus, we obtain the relation (d).
                                   (ii) We assume that C (c : L  E ) is a C -special Frenet curve in E  with curvature functions k , k 2
                                                           4
                                                                                      4
                                                                 
                                                                                                            1
                                   and k  satisfying the relation (a), (b), (c) and (d) for constant numbers a, b, g and d. Then we
                                       3
                                   define a C -curve  C  by
                                           
                                                 c(s)  = c(s) +  . n (s) +  . n (s)                       (11)
                                                                       3
                                                               1
                                   for all s  L, where s is the arc-length parameter of C. Differentiating (11) with respect to s and
                                   using the Frenet equations, we obtain
                                                      dc(s)                       k (s)) . n (s)
                                                                           
                                                                         
                                                                 1
                                                                             2
                                                       ds    (1   k (s)) . t(s) ( k (s)    3  2
          266                               LOVELY PROFESSIONAL UNIVERSITY
   268   269   270   271   272   273   274   275   276   277   278