Page 276 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 276

Unit 22: Bertrand Curves




          and by (18.1)’, (18.2)’ and (20),                                                     Notes

           dn (s)    =      k (s)( k (s) k (s))       k (s)( k (s) k (s) (k (s)) 2  . n (s),
                                     
                                
                                                                      
                                                                
                                                           
                             1
                                        2
             1
                                                        2
                                  1
                                                                         3
                                                                   2
                                                             1
            ds  s  (s)   '(s) ( k (s) k (s))  (k (s)) 2  . t(s)    '(s) ( k (s) k (s))  (k (s)) 2  2
                                                                      2
                                       2
                                                                
                             
                                                           
                                 
                                                                          3
                                           3
                                                                   2
                              1
                                    2
                                                             1
          for all s  L. By the above equalities, we obtain
                           dn (s)     k ( (s)) . t( (s))   P(s)  . t(s)  Q(s)  . n (s),
                             1
                                              
                                        
                            ds  s  (s)  1         R(s)     R(s)  2
          where
          P(s) = –[{(k (s))  – (k (s))  – (k (s)) } + (  – 1)k (s)k (s)]
                              2
                                     2
                                          2
                       2
                                               1
                                  3
                           2
                                                  2
                    1
          Q(s) = [{(k (s))  – (k (s))  – (k (s)) } + (  – 1)k (s)k (s)]
                                          2
                              2
                                     2
                       2
                                  3
                                               1
                                                  2
                    1
                           2
                                      2
                                             2
                 2
                                
          R(s) = (  + 1) ’(s) ( k (s) k (s))   (k (s))  0
                           
                                   2
                                          3
                             1
          for all s  L. We notice that, by (c), P(s)  0 for all s  L. Thus we obtain
          k ( (s))
             
            2
             dn (s)
          =    1       k ( (s) . t( (s))
                                
                          
              ds  s  (s)  1
                           2
                   2
                                  2
                                       
             {(k1(s))  (k (s))  (k (s))  (g2 1)k (s)k (s)
          =            2       3           1   2    > 0
                                     2
                      2
                                
                 '(s)    1  k (s) k (s))  (k (s)) 2
                                          3
                             1
                                  2
          for all s  L. Thus, we can define a unit vector field  n (s)  along  C  by
                                                     2
                       n (s)  = n ( (s))
                               2
                         2
                                 1     dn (s)                
                            =        .   1       k ( (s)) . t( (s)) , 
                                                    
                                                          
                                                   1
                              k ( (s))     ds  s  (s)      
                                 
                                2
          that is,
                                 1
                     n ( (s))  =     .( t(s)   . n (s))                          (21)
                                       
                        
                                               2
                       2
                                 2
                                 1
          for all s  L. Next we can define a unit vector field  n  along  C  by
                                                     3
                        n (s)  = n (j(s))
                               3
                         3
                                                        1
                            =
                                            2
                                                   2
                                ( k (s) k (s))   (k (s)) . { k (s) . n (s) ( k (s) k (s)) . n (s)},  3  1     1    2  3
                                      
                                 
                                                3
                                        2
                                   1
          that is,
                      n ( (s))  = –(sin  ) . n (s) + (cos  ) . n (s)             (22)
                        
                       3
                                                   3
                                   0
                                       1
                                                0
                                           LOVELY PROFESSIONAL UNIVERSITY                                  269
   271   272   273   274   275   276   277   278   279   280   281