Page 359 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 359

Complex Analysis and Differential Geometry




                    Notes                                             L 2   L (s)
                                                                             2
                                                                       
                                                                             
                                                          E (0) E   2(b a)    2(b a)   E (s).
                                                              
                                                           
                                                                 
                                                                                    
                                                                              
                                                                       
                                   Thus,  is locally energy-minimizing.
                                   We  note  that  the  same  lemma  holds  if  we  replace  locally  energy-minimizing  by  energy-
                                   minimizing. The proof of Theorem 3 can now be easily completed with the help of Lemmas 1
                                   and 3.
                                   Proof of Theorem 1. Let  be a reparametrization of  by arc length. By Lemma 3,  is locally
                                   energy-minimizing. By Lemma 1,  is a geodesic.
                                   29.2 The Riemann Curvature Tensor


                                   Definition 5.  Let X, Y, Z, W be  vector fields  on  a Riemannian  surface (U,  g). The  Riemann
                                   curvature tensor is given by:

                                                        R(W, Z, X, Y) g     X , Y Z   [X,Y] Z,W .
                                                                   
                                   We first prove that R is indeed a tensor, i.e., it is linear over functions. Clearly, R is linear in W,
                                   additive in each of the other three variables, and anti-symmetric in X and Y . Thus, it suffices to
                                   prove the following lemma.
                                   Lemma 4. Let X, Y, Z, W be vector fields on a Riemannian surface (U, g). Then we have:
                                                     R(W, Z,  f X, Y) = R(W, f Z,X, Y) = fR(W, Z, X, Y).
                                   Proof. We have:

                                                  Y Z    fX Z   [fX,Y] Z   f  Y X   Y (f X Z)   f[X,Y] ( Yf)X Z
                                                                        X
                                                         Y
                                                  fX
                                                                                            
                                                                                             
                                                                     
                                                                             
                                                      f  Y Z     Y   f  X Z f  X Z f [X,Y] Z     Y   f  X Z
                                                                         Y
                                                        X
                                                                                          f   Y Z    X Z   [X,Y] Z  .
                                                                                                  Y
                                                                                           X
                                   The first identity follows by taking inner product with W. In order to prove the second identity,
                                   note that:
                                                                              
                                           Y fZ   X    Yf Z      X  f Y   Z     Y   f Z   Y f  X Z   X f  Y Z  f   Y Z.
                                                                                       
                                                                    
                                                                                                    X
                                                                       X
                                          X
                                   Interchanging X and Y and subtracting we get:
                                                            X  , Y  fZ     f Z f[   Y ]Z.
                                                                      [X,Y]
                                                                                 X,
                                   On the other hand, we have also:
                                                              [X,Y] fZ   [X,Y]   f Z f  [X,Y] Z.
                                   Thus, we conclude:
                                                        X  , Y  fZ   [X,Y] fZ    f [ X  , Y ]Z   [X,Y] Z  .










          352                               LOVELY PROFESSIONAL UNIVERSITY
   354   355   356   357   358   359   360   361   362   363   364