Page 361 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 361

Complex Analysis and Differential Geometry




                    Notes          hence, B  = B . Using the symmetries of B , we can rewrite this identity as:
                                         ijkl  ljik                   ijkl
                                                          B  + B  = 0.                                     ...(4)
                                                                iklj
                                                           ijkl
                                   We now permute the first three indices cyclically:
                                                          B  + B  = 0,                                     ...(5)
                                                           kijl
                                                                kjli
                                                          B  + B  = 0,                                     ...(6)
                                                           jkil
                                                                jilk
                                   add (4) to (5) and subtract (6) to get, using the symmetries of B :
                                                                                     ijkl
                                                        B  + B  + B  + B  – B  – B  = 2B  = 0.
                                                                           kjli
                                                                       kjli
                                                                  iklj
                                                         ijkl
                                                                               ijkl
                                                                                     iklj
                                                              iklj
                                   This completes the proof of the proposition.
                                   It follows, that all the non-zero components of the Riemann tensor are determined by R 1212 :
                                                             R 1212  = –R 2112  = R 2121  = –R 1221 ,
                                   and all other components are zero. The proposition also implies that for any vectors X, Y, Z, W,
                                   the following identities hold:
                                             R(W, Z, X, Y ) = –R(W, Z, Y, Z) = –R(Z, W, X, Y) = R(X, Y, W, Z),  ...(7)
                                             R(W, Z, X, Y) + R(W, Y, Z, X) + R(W, X, Y, Z) = 0.            ...(8)
                                   Proposition 4. The components R  of the Riemann curvature tensor of any metric g satisfy:
                                                              ijkl
                                                           g R imkl    ik,l    j il,k        nk .  ...(9)
                                                                                    n
                                                             mj
                                                                              n
                                                                     j
                                                                                j
                                                                                      j
                                                                                nl
                                                                              ik
                                                                                    il
                                   Furthermore, we have:
                                                               R
                                                           K    1212  ,                                  ...(10)
                                                               det(g)
                                   where K is the Gauss curvature of g.
                                   Proof. Denote the right-hand side of (9) by  S .  We have:
                                                                       j
                                                                       ikl
                                                                         
                                                                                 n
                                                                      j
                                                               k       j ik ,l     j nl  , j
                                                                      ik
                                                                        j
                                                            l
                                                               i
                                                             k
                                                                                 ik
                                   or  equivalently:
                                                                         jm
                                                                                 ,
                                                                     j
                                                                  n
                                                              j ik ,l       g g     m .
                                                                  ik
                                                                                i
                                                                               k
                                                                             l
                                                                     nl
                                   Interchanging k and l and subtracting we get:
                                                                                     jm
                                                       S ikl   g jm    g  l  , k  ,  m  g R  jm  milk   g R imkl .
                                                        j
                                                                      i
                                   According (9), we have:
                                                                  1       1
                                                                              il
                                                                     ik
                                                                       j
                                                                            ik
                                                               K   g S   g g R .
                                                                                ijkl
                                                                  2       2
                                                                       ikj
                                   In view of the comment following Proposition 8, the only non-zero terms in this sum are:
                                                 1
                                                                                   11
                                                      22
                                                                       21
                                                             12
                                                   11
                                                                         12
                                                                                22
                                                                                              R
                                                               21
                                             K   g g R    g g R   g g R    g g R    det g  1  ,
                                                 2      1212      1221     2112      2121        1212
                                   which implies (10)
          354                               LOVELY PROFESSIONAL UNIVERSITY
   356   357   358   359   360   361   362   363   364   365   366