Page 360 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 360

Unit 29: Geodesics




          The second identity now follows by taking inner product with W.                       Notes
          Let

                                        R ijkl   R  , ,   k  , l  ,
                                                i
                                                  j
                                                                                                z
                                                                                                 i
                                                                                           i
                                                                                                         i
                                                                                    i
          be  the components  of the Riemann tensor.  The previous  proposition shows  that if  X   x  i ,Y   y  i  ,Z   i ,W   w  i ,
                    z
              i
                               ,
                             i
                     i
        i
    X   x  i  ,Y   y  i ,Z   i  ,W  w   then
                              i
                                                     j
                                                   i
                                                      k
                                                        l
                                     R(W, Z, X, Y)  w z x y R ijkl ,
          that is, the value of R(W, Z, X, Y) at a point u depends only on the values of W, Z, X, and Y at u.
          Proposition 3. The components R  of the Riemann curvature tensor of any metric g satisfy the
                                     ijkl
          following  identities:
                                  R ijkl    R ijlk    R jikl   R klij         ...(1)
                                  R ijkl   R iljk   R iklj   0.                 ...(2)
          Proof. We first prove (2). Since   k  , l   0,   it suffices to prove
                                              ,
                                           
                                                     
                                                          
                                   k  , l     k      l  ,   0.     ...(3)
                                           
                                                     
                                                         j 
                                                           k
                                             j
                                         j
                                                  l
                                m
                                    m
          Note that the symmetry      imply that       .
                                lj
                                                     j l
                                                  j
                                                l
                                    jl
          Thus, we can write:
                                           
                                        ,
                                                j .
                                            j
                                                  j
                                                k
                                                        k
                                                   l
                                       k
                                          l
                                                       l
          Permuting the indices cyclically, and adding, we get (3.19). The first identity in (3.23) is obvious
          from Definition 5. We now prove the identity:
                                            R  = R .
                                                   jikl
                                             ijkl
          We observe that:
                                             
                     g  k  j , i     k   g   j  ,   l  j ,  k  i 
                                        i
                        l
                                    l
                                                      ,
                                k  g l  ij    g  j ,  i    l   g    i    g   j ,   i 
                                                                  l
                                                                   k
                                                      j
                                                        k
                                            l
                                 l  g   k   g  j ,  i    l   g  j ,  i    g   j  ,   i  .
                                             l
                                                                    k
                                                                  l
                                                        k
                                 k
                                    ji
          It is easy to see that the first term, and the next two taken together, are symmetric in k and l.
          Thus, interchanging k and l, and subtracting, we get:
                                                                   
                                                            ,
                       R ijkl      g  k , l   ,  i   g   j   ,  l  ,  i    g   l  ,    R jikl .
                                                     
                                    j
                                                           k
                                                                i
                                                                   j
                                                 k
          The last identity in (1) now follows from the first two and (2). We prove that B  = R  – R  = 0.
                                                                                  klij
                                                                             ijkl
                                                                        ijkl
          Note that B  satisfies (1) as well as B  = –B . Now, in view of the identities already established,
                                       ijkl
                   ijkl
                                            klij
          we see that:
                         R  = –R  – R  = –R  – R  = R  + R  – R  = B  + R ,
                                                   ljik
                                          likj
                                    iklj
                                              iklj
                                                        lkji
                                                            iklj
                                iljk
                                                                 ljik
                                                                     klij
                          ijkl
                                           LOVELY PROFESSIONAL UNIVERSITY                                  353
   355   356   357   358   359   360   361   362   363   364   365