Page 338 - DMTH404_STATISTICS
P. 338

Statistics



                      Notes                                        Calculation  Table

                                                       v                                   2
                                                     u     –1     0     1     f     f u  fu   fuv
                                                                               i    i i  i i  ij i j
                                                              2    0     –7
                                                       –1  2     5    7      14    –14   14   –5
                                                       0      0    0      0   6      0    0    0
                                                           1     3     2
                                                       1   8  –8  4  0  0  0  12    12   12  –8

                                                       f¢  11    12    9     32     –2   26  –13
                                                        j
                                                       f¢v¢ –11   0    9     –2
                                                       j j
                                                       f¢v¢ 2  11  0   9     20
                                                       j j


                                         From the table N = 32 (total frequency)
                                    (a)  Regression of Y on X
                                         Regression Coefficient (here h = 10 and k = 5)

                                                        ´
                                                                              -
                                                               ´
                                                            -
                                                    é - 32 13 2 2 ù  5   -  416 4  1
                                                b   =              ´   =         ´  = -  0.25
                                                    ê             ú
                                                         ´
                                                             -
                                                                             -
                                                    ë  32 26 4    û  10  832 4    2
                                                     10  ( ) 2-                5 ( ) 2-
                                         Also,  X =  15 +   =  14.73  and  Y =  7.5 +  =  7.19
                                                        32                      32

                                           a =Y - bX  = 7.19 + 0.25 ´  14.73 = 10.87
                                         Hence, the regression of Y on X becomes Y  = 10.87 - 0.25X
                                                                           C
                                    (b)  Regression of X on Y
                                                               é  -  420  ù  10
                                         Regression coefficient  d =      ´   = - 1.32
                                                               ê         ú
                                                                  ´
                                                                      -
                                                               ë  32 20 4 û  5
                                         Also,  c = X - dY  =14.73 + 1.32 ´  7.19 = 24.22
                                         Hence, the regression of X on Y becomes X  = 24.22 – 1.32Y
                                                                           C
                                    23.3 The Coefficient of Determination
                                    We recall that in the line of regression Y  = a + bX, X is used to estimate the value of Y. Further,
                                                                    C
                                    the estimate of Y, independently of X, is given by a constant. Let this constant be A. Thus, we can
                                    write Y  = A.
                                          C
                                                                                                     n       2
                                                                                                        Y -
                                    Given the observations Y , Y , ......  Y , A will be the best estimate of  Y if  S = å  ( i  A )  is
                                                         1  2     n
                                                                                                     =
                                                                                                     i 1
                                    minimum.
                                                                          ¶ S
                                    The necessary condition for minimum of S is   =  0 .
                                                                         ¶ A
                                                                           =
                                    i.e.,   2 å  (  Y i -  A ) =  0  or  å  Y i -  nA 0  or  A Y .
                                                                                         =


            330                              LOVELY PROFESSIONAL UNIVERSITY
   333   334   335   336   337   338   339   340   341   342   343