Page 342 - DMTH404_STATISTICS
P. 342

Statistics



                      Notes         23.5 Mean and Variance of 'e ' values
                                                                    i

                                    (i)   M ean of e values
                                                  i
                                          We know that   e  = Y  - Y .
                                                       i   i  Ci
                                          Taking sum over all the observations, we have

                                                                    i å
                                                                             0
                                                        Y -
                                                å e = å  ( i  Y Ci ) = å Y -  Y =   [from equation (1)]
                                                   i
                                                                          Ci
                                            Mean of e  values is equal to zero.
                                                    i
                                    (ii)  Variance of e  values
                                                     i
                                          The variance of e  values, in case of regression of Y on X, is given by
                                                        i
                                                      1        2  1          2
                                                 2
                                                S Y X  =  å  ( i  ) 0  =  å  ( i  Y Ci )           .... (2)
                                                          e -
                                                                      Y -
                                                  .
                                                      n           n
                                                            2
                                                   å  Y -  Y  ) is the magnitude of unexplained variation in Y]
                                          [Note that  ( i  Ci
                                                      1                    2
                                                 2
                                                S Y X  =  å  é ( i  Y ) ( b X-  i  - X ) ù
                                                           Y -
                                                  .
                                                      n  ë                û
                                                              2
                                                    Y -
                                                  å  ( i  Y ) 2  b å ( X - X ) 2  b 2 å ( X -  X Y -  Y )
                                                                                     )( i
                                                                                 i
                                                                   i
                                                =          +             -
                                                      n           n                n
                                                   2   2  2       2   2   2  2
                                                               ×
                                                =  s + b s - 2 b bs X  = s - b s X
                                                         X
                                                                      Y
                                                   Y
                                                   2   2  2   2    2
                                                =  s - r s =  s Y  ( 1-  r  )
                                                         Y
                                                   Y
                                    Similarly, it can be shown that the mean of e'  (= X  - X ) values, in case of regression of X on Y,
                                                                        i    i  Ci
                                    is also equal to zero. Further, their variance, i.e.,
                                                 2
                                                S X Y  =  s 2 X  ( 1-  r 2 )
                                                  .
                                    Alternatively equation (2) can be written as
                                                      1              1
                                                                         Y
                                                                               Y
                                                S 2 Y X  =  å Y  - Y Y  =  ë éå i 2  -  aå i  -  bå X Y  ù û
                                                  .
                                                                                       i i
                                                                ) i
                                                               ci
                                                         ( i
                                                      n              n
                                    Similarly, we can write
                                                      1
                                                S 2  =  éå X  2  -  cå X  -  då X Y  ù
                                                  .
                                                 X Y    ë   i     i      i i  û
                                                      n
                                    Remarks:
                                    The above expressions for the variance are based on the following:
                                                å(Y  – Y )  = å(Y  – Y )(Y  – Y )
                                                       2
                                                   i  ci     i  ci  i  ci
                                                = å(Y  – Y )Y  – å(Y  – Y )Y
                                                    i   ci  i  i   ci  ci
                                    It can be shown that the last term is zero.
            334                              LOVELY PROFESSIONAL UNIVERSITY
   337   338   339   340   341   342   343   344   345   346   347