Page 104 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 104

Unit 5: Differential Equations




                                                                                                Notes
                    y
                  d    x  0                                                       ...(iii)
                    x
                y
          so that   x = constant =a (say a)                                       ...(iv)
                x
          so the solution of (i) is equation (iv)
          (D) Linear Equation of the first order (non-homogeneous)
          Let the differential equation of the first order has the form

                  dy
                      f x y  f x                                                   ...(i)
                      1
                             2
                  dx
          In order to solve (i), put
                  y  u x v x                                                      ...(ii)

                  dy   dv  du
          Then        u      v
                  dx   dx  dx
          So equation (i) becomes
                   dv   du
                  u    v    f x u x v x  f x
                            1
                                         2
                   dx   dx
                    du             dv
          or      v     f x u x  u     f x                                        ...(iii)
                                       2
                        1
                    dx             dx
          we choose u such that
                  du
                      f x u x  0
                      1
                  dx
                  du
          or          f x dx  0                                                   ...(iv)
                      1
                  u
          Solving (iv) we have
                  logu  f x dx  a                                                  ...(v)
                         1
          The simplest solution is when a = 0, so that

                       1 f x dx                                                   ...(vi)
                  u  e
          From (iii), (iv) and (vi) we have

                    1 f x dx dv
                  e         f x
                             2
                        dx
                  dv        1 f x dx
          or          f x e
                      2
                  dx
          Thus    v   e  1 f x dx  f x dx a 2                                    ...(vii)
                             2
                             1 f x dx  1 f x dx  1 f x dx
          so      y  uv  a e      e       e     f x dx                           ...(viii)
                                                 2
                          2


                                           LOVELY PROFESSIONAL UNIVERSITY                                   97
   99   100   101   102   103   104   105   106   107   108   109