Page 102 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 102

Unit 5: Differential Equations




                                                                                                Notes
                 Example 4:

                           x  2
                   x
                  2 log ydx  dy  0
                            y
          Here    M  2 log y
                      x

                     x 2
                  N
                      y

                   M   2x
                   y   y


                   N  2x
                   x   y


                   M    N
          So
                   y    y

                        x  2
                                 x
          Thus 2 logx  ydx  dy  dU ( , ) 0
                                   y
                         y
                   U
                      2 log y
                       x
                   x
                   U  x  2
                   y   y


                  U  x  2 log y C
                             1
          Also    U  x 2  logy C  2

            x  2  log y  a  is the solution where a is a constant.

          (C) Integrating Factors
          Let us consider the differential equation

                               ,
                  M  , x y dx N x y dy  0                                          ...(i)
          whose equation can be put into the form

                  U  , x y  a                                                      ...(ii)

          where a is a constant, now from (ii)

                           U     U
                  dU  , x y  dx    dy                                             ...(iii)
                           x      y




                                           LOVELY PROFESSIONAL UNIVERSITY                                   95
   97   98   99   100   101   102   103   104   105   106   107