Page 98 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 98

Unit 5: Differential Equations




               Differentiating again we have:                                                   Notes
                2
               d y    x     3x
                    Ae   9Be                                                      ...(iv)
               dx  2
               Subtracting (iii) from (iv) we have

                2
               d y  dy     3x
                        6Be                                                        ...(v)
               dx  2  dx
               Subtracting (ii) from (iii)

               dy        3x
                   y  2Be                                                         ...(vi)
               dx
                     2
                    d y  dy   dy
               Thus   2     3    3y
                    dx  dx    dx
                   2
                  d y  dy
               or   2  4   3y  0                                                  ...(vii)
                  dx    dx
          3.   The equation of an ellipse is

               x 2  y 2
                       1                                                         ...(viii)
                a 2  b  2
               Find its differential equation
               Differentiating (viii) we get

               2x  2y dy  0
                a 2  b 2  dx                                                      ...(ix)
               Differentiating again, we have

                               2
                2  2  dy  2  2y d y
                             2
               a  2  b  2  dx  b dx  2  0                                          ...(x)
               From (ix), we have

               b  2  y dy
               a 2   x dx                                                         ...(xi)

               From (x) we have

                             2
               b  2  dy  2  d y
                           y                                                      ...(xii)
               a  2  dx     dx  2
               From (xi) and (xii) we have
                   2    2
                dy     d y  dy y
                      y
                dx     dx  2  dx x

                    2
                   d y  dy  2  y dy
               or  y  2            0                                             ...(xiii)
                   dx   dx    x dx



                                           LOVELY PROFESSIONAL UNIVERSITY                                   91
   93   94   95   96   97   98   99   100   101   102   103