Page 100 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 100

Unit 5: Differential Equations




          Solution:                                                                             Notes
                            2
                  y  1 x dx x dy  0
                  1 x    dy
          or          dx     0,  Integrating
                   x  2   y

                   1 x dx  dy  a
                    x  2    y

                    1
          or           log x  log y  a
                    x

                             1
          or      log y  log x  a
                             x
                     y   1
          or      log       a
                     x   x


                 Example 2: Solve
                  dy
                     xy  8x
                  dx
          Solution:

                  dy
                     xy  8x  0
                  dx
                  dy
          or         x y  8  0
                  dx

                   dy
          or           xdx  0
                  y  8
          Integrating we have

                           x 2
                  log y  8     a
                           2
          Here a being an arbitrary constant.
          (B) The Exact Equation
          Consider the differential equation
               M(x, y) dx + N(x, y) dy = 0                                         ...(i)
          with the condition

                M    N
                                                                                  ...(ii)
                 y   x








                                           LOVELY PROFESSIONAL UNIVERSITY                                   93
   95   96   97   98   99   100   101   102   103   104   105