Page 103 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 103

Differential and Integral Equation




                    Notes          Thus equation (i) is exact if
                                           U
                                               M ,
                                           x

                                           U
                                               N
                                           y

                                            2
                                            U    M    N
                                   or                                                                      ...(iv)
                                           x y   y    x
                                   On the other hand if (iv) is not satisfied then we can multiply equation (i) by a function f(x, y)
                                   such that

                                           U
                                               f  , x y M  M '
                                           x
                                           U                                                               ...(v)
                                               f  , x y N  N '
                                           y

                                            2 U  M '  N '
                                   and so                                                                  ...(vi)
                                           x y    y    x
                                   and f(x, y) M(x, y) dx + f(x, y) N(x, y) dy = 0                        ...(vii)
                                   is an exact equation. Here f(x, y) is known as integrating factor.


                                          Example 5: Solve the differential equation by suitable integrating factor

                                                    2
                                          xdy ydx x dx  0                                                   ...(i)
                                   Solution:

                                   Here    x  2  y dx xdy  0


                                   so     M   x 2  y  and N  x

                                           M      N
                                   Now          1,    1
                                            y      x
                                           M    N
                                   so
                                            y   x
                                                               1
                                   Now multiplying equation (i) by   2 , so that
                                                              x

                                                    2
                                          xdy ydx  x dx  0
                                             x  2   x 2                                                    ...(ii)

                                            y
                                   or     d     dx  0
                                            x





          96                                LOVELY PROFESSIONAL UNIVERSITY
   98   99   100   101   102   103   104   105   106   107   108