Page 14 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 14

,
                                                                                          Unit 1: Bessel s Functions




                                                                                                Notes
                                  3
                               ( 1)  C
          So         C  =             0
                      6                     6
                         (n  1)(n  2)(n  3) 3 (2)
                                 ( 1) 4  C
                     C  =               0
                      8                         8
                         (n  1)(n  2)(n  3)(n  4) 4 (2)
                                           
                                           
                                           

          Substituting the values of k, C , C , C ,... in equation for y we get
                                  0  1  2
                                         2                4
                                  k    x         k      x
                      y = x n  C 0  0            0         ....
                               (n  1) 1 2   (n  1)(n  2) 2 2
                                          2      1       x  4
                                      1 x
                                  1
                         = C x n  1                         ....                  ...(19)
                          0
                                (n  1) 1 2  (n  1)(n  2) 2 2
          If we now take C  to be
                        0
                             1
                     C  =                                                         ...(20)
                      0   n
                         2  (n  1)
          Where  (n) is a gamma function.
          As you know the properties of gamma functions n  (n) =  (n + 1), for any value of n, so we get
          various values of  (n). The equation for y becomes

                            x n        1    x  2     ( 1) 2   x  4
                      y =         1                               .....
                         2 n  (n  1)  (n  1) 1 2  (n  1)(n  2)1.2 2

                            1    x  n    1     x  n  2  ( 1) 2  x  4
                       =                                            ...
                           (n  1) 2    (n  2) 1 2     (n  3) .2  2

                               ( 1) s  x  n  2s
          or          y =                                                         ...(21)
                             (n  1 s s  2
                                    )
                         s  0
          Here we have used the fact that
           (n + 1)  (n + 1) = (n + 2),
           (n + 2)  (n + 2) = (n + 3) and so on.

          Also 1, 2, 3... s = s  (s  1)
                                      ,
          The above solution is called Bessel s function J (x). Thus
                                               n
                              ( 1) s   1    x  n  2s
                   J (x) =                                                        ...(22)
                    n        (n  1 s ) (s  1) 2
                         s  0
          For k =  n and if  n is  not an integer then the other solution for  k =  n is obtained from  the
          equation of J (x) by replacing n     n i.e.
                    n


                                           LOVELY PROFESSIONAL UNIVERSITY                                    7
   9   10   11   12   13   14   15   16   17   18   19