Page 18 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 18

,
                                                                                          Unit 1: Bessel s Functions




          Hankel Functions: The Hankel Function, or the Bessel Functions of the third kind are defined by  Notes

                     x
                 H (1) ( )  = J (x) + i Y (x)
                 H  (2) ( )  = J (x) + i Y (x)
                     x
          Prove that

                             1/2
                          2
                  J (x) =      sinx                                               ...(29)
                   1/2
                           x
          Proof: J (x) is given by
                n
                                 ( 1) s    x  2s n
                   J (x) =
                    n        (n  1 s ) (s  1) 2
                         s  0

                                 ( 1) s    x  2s  1/2
          So      J (x) =
                   1/2       (s  3/2) (s  1) 2
                         s  0

                            1/2          s        2s
                          x           ( 1)      x
                       =
                          2       (s  3/2) (s  1) 2
                               s  0
          Expanding

                            1            o            2             4
                          x  2    1    x       1    x       1    x
                  J (x) =                                            ....
                   1/2          3            5             7
                          2     (  2 ) (1) 2  (  2 ) (2) 2  (  2 ) (3) 2
                            1                 2               4
                          x  2  1       1   x        1     x
          or      J (x) =          1                            ...
                   1/2
                          2    (  3 2 )  3  2  (2) 2  3 2 5/2  (3) 2
                            1             2             4
                          x  2   1       x  (2)  2.2   x
                       =               1                   ...
                                   1
                          2    ( 1 2 ) ( )  3 2  2  1 2 3 5 (2) 4
                                    2
                            1             2      4
                          x  2  1       x       x
                       =             1               ...
                          2   ( 1 2 ) ( )  2 3  1 2 3 4 5
                                  1
                                   2
                            1            3   5
                          x  2  2  1     x  x
                       =              x       ...
                          2    (  1 2 ) x  3  5
                                1
                           1  2  2
                       =          sinx
                          ( 1 2 ) x
          Here   1  2






                                           LOVELY PROFESSIONAL UNIVERSITY                                   11
   13   14   15   16   17   18   19   20   21   22   23