Page 23 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 23

Differential and Integral Equation




                    Notes          Thus in the expansion of t,
                                        x    1      æ  1ö      2  1      3  1            n    n  1
                                       e  t     = J  +  t - ÷ J  +   t  2  J 2  t  3  J  3  ... .....  t  (1)  n  J n  ...
                                                    ç
                                        2    t    0  è  t ø  1   t         t                   t
                                                          x
                                                                x
                                                                         x
                                                = J  0 ( ) t J 1 ( ) J  1 ( )] t  2  J  2 ( ) J  2 ( )  ...
                                                    x
                                                                               x
                                                     n
                                                         t
                                                =    t J n ( )
                                                 n
                                   Here we have used the result J (x) = ( 1)  J (x)
                                                                   n
                                                            n        n
                                                                         ,
                                   (A) Trigonometric Expansions involving Bessel s Functions
                                   Show that
                                   (a)  cos (x sin  ) = J (x) +2 cos 2  J  +2 cos 4  J  + ....
                                                   0           2        4
                                   (b)  sin (x sin  ) = 2 sin   J  + 2 sin 3  J  + ....
                                                         1        3
                                   (c)  cos (x cos  ) = J    2 cos   J  + 2 cos 4  J  ....
                                                   0        2         4
                                   (d)  sin (x cos  ) = 2 cos   J    2 cos 3   J + 2 cos 5  J  + ...
                                                         1         3         5
                                   (e)  cos x = J    2 J  + 2J    2J  + ...
                                              0   2   3   4
                                   (f)  sin x = 2 J    2 J  + 2 J  ....
                                               1    3   5
                                   Proof: We know from generating function that
                                        x    1       n
                                                        x
                                       e  t     =   t J n ( )
                                        2    t
                                                 n
                                                    n
                                                              n
                                                        x
                                                                  x
                                                =   t J n ( )  t J n ( )
                                                 n  0      n  1
                                                    n
                                                                   x
                                                        x
                                                =   t J n ( )  t  n  J  n ( )
                                                 n  0      n  1
                                                              n
                                                                  J
                                                                    x
                                                = J  0  (t  n  ( 1) t  n ) ( )              {since J (x) = ( 1) J (x)}
                                                                   n
                                                                                                           n
                                                                                                  n
                                                     n  1
                                   Thus,
                                         x   1
                                        e 2  t   = J  (t t  1 )J  (t 2  t  2 ) J  (t 3  t  3 ) J           ...(i)
                                             t    0        1        2         3
                                               i
                                                 n
                                   Let us put t =  e , t  = e in
                                                  x
                                   then (i) becomes  e  2 (e i  e  i  )  =  J  0  (e i  e  i  )J  1  (e 2i  e 2i  )J  2  (e 3i  e  3i  )J  3  ...  (ii)
                                                  1  in  in
                                   Since  cos n   =   e  e
                                                  2
                                                  1  in   in
                                          sin n   =  e  e
                                                  2i



          16                                LOVELY PROFESSIONAL UNIVERSITY
   18   19   20   21   22   23   24   25   26   27   28