Page 24 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 24

,
                                                                                          Unit 1: Bessel s Functions




          So (ii) may be written as                                                             Notes
                             i
                  e ix sin    = J  + 2  sin   J  + 2 cos 2  J  + 2 i sin 3  J  + ...  ...(iii)
                         0        1         2         3
          comparing real and imaginary part on both sides
          we have

          (a) cos (x sin  ) = J  + 2 cos 2  J  + 2 cos 4  J  + ...                ...(iv)
                         0         2         4
          (b) sin (x sin  ) = 2 sin   J  + 2 sin 3  J  + ...                       ...(v)
                               1        3
              Replacing   by  /2     in (iv) and (v) and using sin     sin ( /2    ) = cos  , we get
          (c) cos (x cos  ) = J    2 cos 2  J  + 2 cos 4  J ...                   ...(vi)
                         0         2         4
          (d) sin (x cos  ) = 2 cos   J    2 cos 3  J  + 2 cos 5  J ...          ...(vii)
                               1         3        5
              Replacing   by 0 in (iv) and (vii) we get
          (e)  cos x = J    2 J  + 2 J ...                                      ...(viiii)
                     0    2   4
               and

          (f)  sin x = 2 J    2 J  + 2 J ...                                      ...(ix)
                       1   3    5
          1.6 On the Zeros of Bessel Functions J (x)
                                                    n
          We know that Bessel function J (x) satisfies the equation
                                   n
                     2
                                x
                        x
                    d J  ( )  d J  ( )
                                            x
                  x   n    x  n    (x  2  n 2 ) ( ) 0
                                          J
                                           n
                     dx  2    dx
          Here n is a positive integer
          let us put x =   ,
                  d J  n  1 d J  n
                  dx     d
                   2
                           2
                  d J n  1 d J n
                  dx 2   2  d  2
          So equation (1) becomes
                 2
               2 d J n  (  )  d J n (  )  (  2 2  n 2  ) (  ) 0                   ...(ii)
                                           J
                  d  2       d             n
          which may be written as

               d   d J n (  )  n 2  2  J  (  ) 0
              d      d                n                                           ..(iii)

                                 n 2
          let us put R =  , P =  , Q =


                  d    d J n  (  )
          Then       R          Q  2 p J  n (  )                                  ...(iv)
                  d      d





                                           LOVELY PROFESSIONAL UNIVERSITY                                   17
   19   20   21   22   23   24   25   26   27   28   29