Page 26 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 26

,
                                                                                          Unit 1: Bessel s Functions




          1.7 Illustrative Examples                                                             Notes


                 Example 1: Show that

                           2
                                      2
                                2
            (i)  x sin x = 2 (2  J    4  J  + 6  J    ...)
                             2    4    6
                                      2
                                2
                           2
            (ii)  x cos x = 2 (1  J    3  J  + 5  J    ...)
                             1    3    5
          Solution: (i) We know that
             cos (x sin  ) = J  + 2 J  cos 2  + 2 J  cos 4  + ...                  ...(i)
                         0    2        4
                             ,
          Differentiating w.r.t. ‘  we get
              sin (x sin  ). x cos   = 0   2.2 J  sin 2    2.4 J  sin 4 ...       ...(ii)
                                      2          4
                              , ,
          Differentiating (ii) w.r.t.   , we have
                               2
              cos (x sin  ). (x cos  )  + sin (x sin  ) (x sin  )
                            2
                                        2
                 2
            =  2.2 .J  cos 2   2.4  J  cos 4    2.6  J  cos 6 ...                 ...(iii)
                  2           4          0
          Replacing   by  /2 in (iii), we get
                                2
                           2
                                     2
                 x sin x = 2 (2  J    4  J  + 6  J  ...)
                             2    4    6
          (ii)  Start with
             sin (x sin  ) = 2J  sin   + 2J  sin 3  + ...
                          1       3
                                  , ,
          Differentiate this twice w.r.t.    as in part (i) and then replace   by  /2. Thus we can get the
          required answer.
                 Example 2: Show that when n is integral
          (a)   J  =  cos(n  x sin )d
                n
                    0
          (b)   J  =  cos( cos )d
                        x
                0
                    0
                        x
                 =   cos( sin )d
                    0
          and hence deduce that

                      x 2  x 4    x 6
              J (x) = 1                + ....
                                   2
                           2
                                 2
              0       2  2  2 .4 2  2 .4 .6 2
                         r
                      ( 1) x 2r
                 =         2
                        r
                   r  0 2 . !r
          Solution: We know that
             cos (x sin  ) = J  + 2J  cos 2 +... + 2J  cos 2m  +...                ...(i)
                         0   2           2m
          and sin (x sin  ) = 2 sin  .J  + 2 sin 3  J  + ...
                               1        3
                        +2J    sin (2m + 1)  +...                                 ...(ii)
                           2m + 1


                                           LOVELY PROFESSIONAL UNIVERSITY                                   19
   21   22   23   24   25   26   27   28   29   30   31