Page 27 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 27

Differential and Integral Equation




                    Notes          Multiplying both sides of (i) by cos 2m  and then integrating between the limits 0 to  , we get


                                                   cos( sin )cos 2m d
                                                      x
                                                  0

                                                                                           2
                                                = J 0  cos2m d  2J 2  cos2 cos2m d  ... 2J 2m  cos 2m d  ...
                                                   0             0                      0


                                                = 0 + 0 + ... + J  2m  (1 cos4m  )d  ...
                                                             0
                                                = J .
                                                   2m
                                   Similarly, we can prove that


                                                   cos( sin )cos(2m  1) d  0
                                                      x
                                                  0
                                   Again multiplying both sides of (ii) by sin (2m + 1)  and then integrating between the limits 0 to
                                    , we get

                                                   sin( sin )sin(2m  1) d
                                                      x
                                                  0

                                                =  2J 1  sin .sin(2m  1) d  2J 2  sin3 sin(2m  1) d
                                                    0                    0
                                                              2
                                                  ... 2J    sin (2m  1) d  ...
                                                       2m  1
                                                           0

                                                = 0 + 0 +...+ 2J  2m  1  1 cos2(2m  1)  d  ...
                                                              0
                                                = J    [ ]  J
                                                  2m+1  0   2m  1
                                   Similarly,


                                                      x
                                                   sin( sin )sin2m d  0
                                                  0
                                   Therefore


                                                                         m
                                                                              x
                                                   cos(2m  x sin )d  cos2 .cos( sin )d
                                                  0                 0

                                                             x
                                                 + sin2m  .sin( sin )d
                                                   0
                                                =  J
                                                   2m




          20                                LOVELY PROFESSIONAL UNIVERSITY
   22   23   24   25   26   27   28   29   30   31   32