Page 32 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 32

,
                                                                                          Unit 1: Bessel s Functions




                                                                                                Notes
                 Example 6: Show that

               x                 1
                                         n
                  n
          (a)    x J  n  1 ( )dx  =    x J  n , n  1.
                       x
                             2  n  (n  1)
               0
                                1         1
                  n
                       x
          (b)    x J n  1 ( )dx =   n  , n  .
                            2  (n  1)     2
               0
          Solution:
          (a)  From recurrence formula II, we have
                  d    n
                                n
                          x
                     x J n ( ) =  x J  ( )dx                                      ...(i)
                                    x
                  dx             n  1
                                  , ,
                 Integrating (i) w.r.t.  x  between the limits 0 and x, we get
                             x
                          x
                    n
                                n
                       x
                   x J n ( )  =  x J  ( )dx
                                    x
                          0      n  1
                             0
                                    x
                               x
                             J n ( )  n
                   n
                                           x
                  x J  ( ) lim       x j  ( )dx                                   ...(ii)
                      x
                     n         n        n  1
                          x  0 x
                                    0
                      J  ( )   1    x n        x 2           1
                        x
               But lim  n  lim  .         1           ...
                   x  0 x n  x  0 x n  2 n  (n  1)  2.2.(n  1)  2 n  (n  1)
               Hence (ii) may be written as
               x
                                       n
                  n
                 x J  ( )dx    1     x J  ( )
                                          x
                       x
                    n  1     n           n
                            2  (n  1)
               0
                               ,         ,
          (b)  Integrating (i) w.r.t.  from 0 to    we get
                    n
                                 n
                                     x
                   x J  ( )    x J  ( )dx
                       x
                      n
                          0       n  1
                              0
                               x
                     J  ( )  J  ( )
                       x
                                       n
                                           x
                  lim  n  lim  n     x J  n  1 ( )dx                       ...(iii)
                  x  0 x n  x  0 x n
                                    0
                                 x
                              J  ( )    1
               As in part (a),  lim  n  1 n  n                             ...(iv)
                           x  0  x   2  (n  1)
               We know that for large values of x the approximate value of  J n ( )is given by
                                                                   x
                           1
                         2  2          1        1
                  J n ( ) ~  cos x  n      ,n
                    x
                         x            2 2       2
                                           LOVELY PROFESSIONAL UNIVERSITY                                   25
   27   28   29   30   31   32   33   34   35   36   37