Page 29 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 29

Differential and Integral Equation




                    Notes          From (i) we have
                                                 cos (x sin  ) = J  + 2J  cos 2  + 2J  cos 4   ...
                                                             0   2        4

                                                      x
                                                   cos ( sin )d  J  d  2J  cos2 d  ...
                                                                0      2
                                                 0               0      0
                                               J 0.
                                   Deduction: We have to prove that


                                                       1
                                                             x
                                                 J 0 ( )  cos ( cos )d
                                                   x
                                                         0
                                                  1    x 2  cos 2  x 4  cos 4  x 6  cos 6
                                               =     1                           ... d                    ...(iii)
                                                          2!       4!      6!
                                                   0
                                                            1.3.5...(2r  1)
                                                     2r
                                   Since          cos   d
                                                                   r
                                                             2.4.6...(2 )
                                                 0
                                   from definite integrals.
                                      from (iii), we get
                                                  1   x 2  1  x 4  1.3  x 6  1.3.5
                                            J (x) =                             ...
                                            0
                                                       2! 2   4! 2.4  6! 2.4.6
                                               =  1  x 2  x 4    x 6   ...
                                                                  2
                                                    2  2  2  2  4 2  2  2  4 6  2
                                                    x 2   x 4     x 6
                                               =  1  2   2   2   6     ...
                                                    2   2 (2!)  2 (3!)
                                                       r
                                                    ( 1) x 2r
                                               =      r
                                                       r
                                                     (2 . !)
                                                 r  0
                                   Self Assessment

                                   3.  Verify directly from the representation

                                                   1
                                             J (x) =   cos( sin )d
                                                         x
                                              0
                                                    0
                                                      ,
                                   that J (x) satisfies Bessel s equation in which n = 0
                                       0
                                          Example 3: Prove
                                                          1
                                             ax
                                           e  j (bx )dx        ,a  0.
                                               0         2   2
                                                       {(a  b  )}
                                          0

          22                                LOVELY PROFESSIONAL UNIVERSITY
   24   25   26   27   28   29   30   31   32   33   34