Page 34 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 34

,
                                                                                          Unit 1: Bessel s Functions




          1.10 Review Questions                                                                 Notes

          Prove that:

                      2
                     d J 0 ( )  1 dJ 0
                         x
                  x
                                  x
          1.   J 2 ( )  2   x     ( )
                      dx       dx
                             2
                            d J 0 ( )
                               x
                       x
                  x
          2.   J 2 ( ) J 0 ( ) 2  2
                             dx
                             2
                      dJ  0  d J 0
                                x
                  x
          3.   J 2 ( ) 3  4   2  ( ) 0
                      dx    dx
                 d
                            x
                                   x
                     x
          4.   2   J  n ( )  J  n  1 ( ) J n  1 ( )
                 dx
          5.   Solve the Differential equation
                  2
                 d y   dy    2  9
               x  2  2  x   x    y  0
                 dx    dx      4
               and show that
                              x
                      x
               y  A J  3  ( ) BJ  3 ( )
                     2      2
          1.11 Further Readings
          G. N. Watson, A Treatise on the Theory of Bessel Functions
          Louis A. Pipes and L.R. Harvill, Applied Mathematics for Engineers and Physicists
          K. Yosida, Lectures on Differential and Integral Equations
          Jai Dev Anand, P.K. Mittal and Ajay Wadhwa, Mathematical Physics Part II
































                                           LOVELY PROFESSIONAL UNIVERSITY                                   27
   29   30   31   32   33   34   35   36   37   38   39