Page 39 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 39

Differential and Integral Equation




                    Notes                              r s  2
                                   Equating coefficients of  x   we get
                                                   C r (r s )(r s  1) (n r s  2)(n r s  1)C  2 r  = 0

                                   for  r  0, 1, ...                                                       ...(D)
                                   Since the leading term  is C  so that
                                                        o
                                   C  1  0, C  2  0. Thus C  satisfies
                                                      o
                                                         s
                                                       C 0 ( )(s  1) = 0                                   ...(E)
                                   Since  C 0  0,  so the indicial equation is

                                                           ( s s  1) = 0                                   ...(F)
                                   giving the value  s  0  and  s  1.

                                   Next putting  r  1,  we have

                                                       (s  1)s C 1  = 0                                    ...(G)

                                   So for  s  0,  C  and C  are both arbitrary. Thus for s = 0, equation (D) becomes
                                              0     1
                                                                   (n r  2)(n r  1)
                                                             C   =                C  r  2                 ...(H)
                                                              r          ( r r  1)
                                   From equation (H),

                                                                      ( n n  1)
                                                             C 2 =         C  0
                                                                      1.2
                                                                     (n  1)(n  2)
                                                             C 3 =             C 1
                                                                        3.2
                                                                     (n  2)(n  3)  ( n n  2)(n  1)(n  3)
                                                             C 4 =            C 2                 C 0
                                                                        4.3             1.2.3.4
                                                                     (n  3(n  4)  (n  3)(n  1)(n  2)(n  4)
                                                             C 5 =            C 3                    C 1
                                                                       5.4              1.2.3.4.5
                                                                                               ...............................................................................................
                                                                                               ...............................................................................................
                                                                                               ...............................................................................................
                                                            and so
                                   Substituting the above values of C,  in equation (B) and using s = 0 value we have
                                                               0
                                                               ( n n  1)  2  ( n n  2)(n  1)(n  3)x 4
                                                F n ( ) =  C 0  1  2  x       1.2.3.4    ...
                                                   x

                                                               (n  1)(n  2)  (n  3)(n  1)(n  2)(n  4)
                                                          C  1  x        x 3                    x 4 ...    ...(I)
                                                                  1.2.3            1.2.3.4.5
                                   By applying ratio test it may be shown that above two series converge in the interval (-1, 1)





          32                                LOVELY PROFESSIONAL UNIVERSITY
   34   35   36   37   38   39   40   41   42   43   44