Page 42 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 42

Unit 2: Legendre’s Polynomials




                                                                                                Notes
                                                       (n  2)(n  3)
                                                C =              C
                                                 4      n (2n  3)  2
                                                       (n  3)(n  2)(n  1)n
                                                   =                    C 0
                                                       1.2.4.(2n  3)(2n  1)

                                                       (n  4)(n  5)
                                                C =              C 4
                                                 6       6(2n  5)
                                                       (n  5)(n  4)(n  3)(n  2)(n  1)n
                                                   =                            C 0
                                                         2.4.6(2n  5)(2n  3)(2n  1)
                                                                                                              .......................................................................
                                                                                                              .......................................................................
                                                                                                              .......................................................................

          Substituting these values of C’s in equation (B) we have for s = n

                                 ( n n  1)  x  2  ( n n  1)(n  2)(n  3)  n  4
                             n
                    y = C 0  x        x                    x  ...                 ...(N)
                                2(2n  1)    2.4 (2n  1)(2n  3)
                      = y  (say)
                         1
          For the second value of  s  n  1,  we have from equation (K)

                          ( n r  1)( n r )
                   C =                  C r  2
                    r       (2n r  1)( r )
                         (n r  1)(n r )
          or       C =               C  r  2                                      ...(O)
                    r     r (2n r  1)
          Putting the values of  r  2, 4, 6, ...  in equation (O)

                         (n  1)(n  2)
                   C  =            C 0
                    2     2(2n  3)

                         (n  3)(n  4)
                   C  =            C  2
                    4     4(2n  5)
                         (n  4)(n  3)(n  2)(n  1)
                      =                       C 0
                            2.4(2n  3)(2n  5)
                                ........................................................................
                                ........................................................................
                                ........................................................................

          Substituting these values of C’s in equation (B) we have for  s  n  1

                    y = C x  n  1  C x  n  3  C x  n  5  ....
                          0      2       4
                                  (n  1)(n  2)  n  3  (n  1)(n  2)(n  3)(n  4)  n  5
                              n
                               1
                      =  C 0  x            x                         x    ...
                                   2.(2n  3)        2.4(2n  3)(2n  5)
                      = y                                                          ...(P)
                         2


                                           LOVELY PROFESSIONAL UNIVERSITY                                   35
   37   38   39   40   41   42   43   44   45   46   47