Page 47 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 47

Differential and Integral Equation




                    Notes
                                                  8        2      3    20  2    108
                                                      x
                                                               x
                                               =    P 4 ( ) 2  P 3  ( )  x  x  x
                                                  35       5      5     7       35
                                                  8      4      20  2  1  108
                                                      x
                                                             x
                                               =    P 4 ( )  P 3 ( )  x  x
                                                  35     5       7    5   35
                                                  8      4      20 2       1  1   108
                                                             x
                                                      x
                                                                       x
                                               =    P 4 ( )  P 3 ( )  P 2  ( )  x
                                                  35     5       7  3      3  5    35
                                                  8      4      40      1   224
                                                                     x
                                                      x
                                                             x
                                               =    P 4 ( )  P 3 ( )  P 2 ( )  x
                                                  35     5      21      5   105
                                                  8      4      40      1      224
                                                                     x
                                                      x
                                                             x
                                                                                    x
                                                                            x
                                               =    P 4 ( )  P 3 ( )  P 2 ( )  P 1 ( )  P 0 ( )
                                                  35     5      21      5      105
                                                          1         1
                                          Example 3: Prove  1  P 1 (cos )  P 2 (cos ) ...
                                                          3         3
                                                  ... log  1 sin    sin
                                                               2      2
                                   Solution: From the generating function, we have
                                                          n
                                                         h P  ( ) = (1 2hx h  2  1/2                       ...(i)
                                                              x
                                                            n                )
                                                       n  0
                                   Integrating w.r.t. h from 0 to 1, we get
                                                      1              1    dh
                                                        n
                                                           x
                                                       h P n ( ) dh =                                      ...(ii)
                                                      0             0          2
                                                   n  0                (1 2hx h  )
                                   Replacing x by cos   on both sides, (ii) gives
                                                          1          1      dh
                                                            n
                                                   P  (cos )  h dh =
                                                    n                             2
                                                                           h
                                                n  0      0         0  (1 2 cos  h  )
                                                          h n  1  1  1       dh
                                   or             P  (cos )      =
                                                   n
                                                n  0      n  1  0   0  (h  cos ) 2  sin 2
                                                        P n (cos )
                                   or                     n  1   = log(h  cos )  (h  cos ) 2  sin 2
                                                      n  0                                      0
                                                                 = log{(1 cos )  [(1 cos ) 2  sin  2  ]} log (1 cos )

                                                                 = log{(1 cos )  [2(1 cos )}] log(1 cos )

                                                                      (1 cos )  2 (1 cos )
                                                                 =  log
                                                                             (1 cos )

                                                                       {(1 cos )} {(1 cos )}  2 {(1 cos )}
                                                                 =  log
                                                                              {(1 cos )} {(1 cos )}



          40                                LOVELY PROFESSIONAL UNIVERSITY
   42   43   44   45   46   47   48   49   50   51   52