Page 50 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 50

Unit 2: Legendre’s Polynomials




                                                                                                Notes
                               2 ( 1) n (n  1) ( 1) = 0
                                P
                                            P
                                 n
                                             n
                                                       1
                                                              P
          or                                 P  ( 1) =   ( n n  1) ( 1)
                                             n         2       n
                                                   = ( 1) n  1 1  (n  1)  [ P  ( 1) ( 1) ].
                                                                                    n
                                                           . n
                                                            2              n
                 Example 6: Prove that  P n (0) 0,  for n odd and
                         ( 1) n  /2  ! n
                                 ,
                 P n (0) =  2 { /2!} 2  for n even.
                          n
                            n
          Solution:
          (i)  We know that

                         1.3.5...(2n  1)  n  ( n n  1)  n  2  ( n n  1)(n  2)(n  3)  n  4
                   x
                 P n ( ) =           x         x                    x    ...
                               ! n      2(2n  1)     2.4(2n  1)(2n  3)
          when n is odd, say  n  (2m  1),  then

                         1.3.5...{2(2m  1) 1}  2m  1  (2m  1)(2m  1 1)  2m  1 2
                   x
              P 2m  1 ( ) =                x                    x      ...
                              (2m  1)!            2.{2(2m  1) 1}
          Putting  x  0,  we get  P 2m  1 (0) 0,

          i.e.,  P n (0) = 0 when n is odd.
          Also, we have

                       n
                      h P n ( ) = (1 2xh h 2 )  1/2
                          x
                    n  0
                       n
          or          h P n (0) = (1 h 2 )  1/2  1 ( h ) 2  1/2
                    n  0
                                   1   2  1.3   2 2  1.3.5  2 3  1.3.5...(2r  1)  2 r
                             = 1    .( h  )  ( h  )    ( h  )  ...          ( h  )  ...
                                   2      2.4       2.4.6           2.4...2r
          Hence all powers of h on the R.H.S. are even.
                                 2m
          Equating the coefficient of h  on both sides, we have
                                1.3.5...(2m  1)  m
                       P 2m (0) =          ( 1)
                                  2.4.6...2m
                                        m
                                      (2 )!
                                   m
                             =  ( 1)  2m   2
                                     2  ( !)
                                        m
          i.e. when n = 2 m, then
                                     n
                                  ( 1) n !
                                      2
                        P n (0) =        2
                                 n
                                2 ( /2)!
                                    n
                                           LOVELY PROFESSIONAL UNIVERSITY                                   43
   45   46   47   48   49   50   51   52   53   54   55