Page 46 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 46

Unit 2: Legendre’s Polynomials




          Also it can be written as                                                             Notes
                          n  ( 1) (2n  2 )!
                                r
                                      r
                 P  ( ) =                x n  2r                                   ...(E)
                   x
                 n          n
                                       r
                         r  0  2 (n r )!(n  2 )!
                 Example 1: From the relation
                                      1
                                              n
                           (1 2xh h 2  ) 2  =  h P n ( )
                                                  x
                                           n  0
                                          x
                   x
          Obtain  P 0 ( ), P 1 ( ), P 2 ( ), P 3 ( ) and  P 4 ( ).
                             x
                        x
                                  x
          i.e.
          Prove
                   x
                 P 0 ( ) = 1, P 1 ( ) 1
                             x
                         1   2          1  3
                 P 2 ( ) =  (3x  1), P 3 ( )  (5x  3 )
                                    x
                                               x
                   x
                         2              2
                         1    4    2
                 P  ( ) =  (35x  30x  3).
                   x
                  4
                         8
                 Example 2: Express  ( )P x  x 4  2x 3  2x 2  x  3  in terms of Legendre’s polynomials.
          Solution: From Example 1, we have
                                        (3x 2  1)
                                     x
                 P 0 ( ) = 1, P 1 ( ) x P 2 ( )  ,
                   x
                             x
                                 ,
                                           2
                         (5x  3  3 )   35x  4  30x  2  3
                               x
                   x
                 P  ( ) =        ,P  ( )
                                    x
                  3               4
                            2                8
                         1    4    2
          from   P 4 ( ) =  (35x  30x  3),
                   x
                         8
                          8      6  2  3
                              x
                   x 4  =  P 4 ( )  x   ,
                         35      7    35
                         1   3      3  2     3
                                          x
                                x
          from   P 3 ( ) =  (5x  3 ), x  P 3 ( )  , x
                   x
                         2            5      5
                         1   2     2  2     1
                                         x
                   x
          from   P 2 ( ) =  (3x  1), x  P 2 ( )
                         2            5     3
                           x
          and       x = P 1 ( );  1  P 0 ( )
                                     x
          Substituting these values, we have
                          8      6  2  3   3    2
                              x
                 P ( ) =   P 4 ( )  x    2x   2x  x  3
                   x
                         35      7    35
                         8         3  20  2  108
                              x
                      =    P 4 ( ) 2x  x   x
                         35           7       35
                                           LOVELY PROFESSIONAL UNIVERSITY                                   39
   41   42   43   44   45   46   47   48   49   50   51