Page 28 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 28

,
                                                                                          Unit 1: Bessel s Functions




          Also                                                                                  Notes

                          cos (2m  1)  x  sin  d
                         0

                                                               x
                                        x
                       =  cos(2m  1) .cos( sin )d  sin(2m  1) sin( sin )d
                         0                       0
                       =  J 2m  1
          Hence for all positive integral n, we get


                          cos(   x sin )d  J  .
                                            n
                         0
          If n is negative, say n =   m, where m is positive, then


                          cos(   x sin )d
                         0

                       =  cos( m  x  sin )d
                         0
                          0
                       =   cos  m (   ) x sin(  ) d                      Putting   =



                       =  cos  m   (m  x sin ) d
                         0


                       =   cos m  cos(m  x sin ) + sin m  sin(m  x  sin )d
                         0

                             m
                         = ( 1)   cos (m  x sin )d
                               0
                                                                                 m
                       = ( 1) m   J (x)                           Since J  (x) = ( 1)   J (x)
                               m                                        m          m
                       = J (x)
                           n
          Hence for all integral values of n

                          cos (n  x sin )d  J  n
                         0
          (b) Putting   =  /2 +   in the value of cos (x sin  ) from (i), we have

                         cos (x cos  ) = J    2J  cos 2  + 2J  cos 4   ...
                                     0   2        4
                              x
                          cos ( cos )d  J 0  d  2J 2  cos2 d  ...
                         0              0       0
                       =  J
                           0




                                           LOVELY PROFESSIONAL UNIVERSITY                                   21
   23   24   25   26   27   28   29   30   31   32   33