Page 182 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 182

Unit 10: Green’s Function Method




          10.4 Green’s Function for Two Independent Variables                                   Notes

          Let us assume that a function z of x and y satisfies the differential equation
                    L(z) = f(x, y)                                                 ...(1)
          Where L denotes the linear operator

                           2
                               a   b    c                                          ...(2)
                          x y    x    y
          Now let w be another function with continuous derivatives of the first order. We may write

              2 z   2 w        z        w
           w      z         w         z
             x y    x y   y    x    x   y

                            z    (aw )
                         wa    z         (awz )
                            x     x    x
                            z    (aw )
                         wb    z         (bwz )
                            y     y    y
          Defining the M operator by the relation

                            2 w  (aw )  (bw )
                     Mw =                   cw                                     ...(3)
                           x y    x      y
          we find that

                             2 z   z    z
             wLz   z Mw = w      a    b   cz
                            x y    x    y

                            2 w   (aw )  (bw )
                         z                   cw
                            x y    x     y

                                      w                z
                       =   (awz )   z      (bwz )    w
                          x       x   y   y       y    x

          or
                          u   v
              wLz   zMw =                                                          ...(4)
                          x   y

                               w              z
          where       u = awz   z  ,  v = bwz + w                                  ...(5)
                                y             x
          The operator M defined by equation (3) is called the adjoint operator. If M = L, we say the operator
          L is self-adjoint.
          Now if   is a closed curve enclosing an area  , then it follows from equation (4) and a straight
          forward use of Green’s theorem that

                                    u
                 wLz zLw dxdy =           dxdy
                                    x   y




                                           LOVELY PROFESSIONAL UNIVERSITY                                   175
   177   178   179   180   181   182   183   184   185   186   187