Page 186 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 186

Unit 10: Green’s Function Method




                                                                                                Notes
                                                                                   1
          figure) and apply the result (4) to the region k bounded by the curves C and   with   log     .
                                                                                 r r 1
          Since both   and   are harmonic, it follows that if S is measured in the direction shown in the
          fig.,


                                  1        1
                      x  ,y  log      log      = 0                         ...(5)
                            n   r r  1   r r  1  n
                C
          we can show that
                                             1
                                                          y
                                                        x
                                        log     ds  2  ( , ) 0( )
                                       n    r r 1
          and that


                                          1
                                     log     ds  2 M  log ,
                                        r r 1  n



          where M is an upper bound of   .  Inserting these results into equation (5), we find that
                                     r


                                 1       1     x  ,y               1
                        (x, y) =     log            x  ,y  log     ds      ...(6)
                                2       r r 1   n            n    r r 1
                                   C
          we now introduce a Green’s function G(x, y, x , y ) defined by the equations

                                                           1
                             G(x, y, x , y ) = W ( , , , ) log                 ...(7)
                                               y
                                             x
                                                 x
                                                   y
                                                          r r  1
          where the function W(x, y, x , y ) satisfies the relations
                    2    2
                            W  ( , , , ) = 0                                       ...(8)
                               x
                                    y
                                y
                                  x
                     2
                          2
                    x    y
                                                
                             W(x, y, x , y ) = log r r  1  onC                     ...(9)
          then for   satisfying equations
                                     2    = 0           within  ,
          and                           = f(x, y)       on C                      ...(10)
          is given by the expression

                                             1         G
                                                              x
                                                             y
                                   (x, y) =       x  ,y  G x , , ,y ds            ...(11)
                                            2           n



                                           LOVELY PROFESSIONAL UNIVERSITY                                   179
   181   182   183   184   185   186   187   188   189   190   191