Page 188 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 188

Unit 10: Green’s Function Method




          10.8 Review Questions                                                                 Notes

          1.   Find the Green’s function for the one dimensional case given by

                              d  2
                         L y   2  y  0
                          x
                             dx
               with     y(0) = y (0), y(1) =  y (1)

                                                                       2    2
          2.   Find the Green’s function for the boundary value problem   2       0,  for
                                                                       x 2  y 2
               r < 0, given that   = f(0) for r = a
          3.   Prove that for the equation

                                        2
                                         z   2    z   z
                                                         0
                                       x y  x y   x  y
               the Green’s function is

                                           (x y ) 2xy  (  )(x y ) 2
                                    y
                                 G x , , ,                          .
                                                          3
          Answers: Self  Assessment


                       x          x
          1.   G  , x
                                  x
                        1      1     2  1
          2.   G  , x    x       x      .
                        2      4       6

          10.9 Further Readings




           Books      K. Yosida, Lectures in Differential and Integral Equations
                      Sneddon L.N., Elements of Partial Differential Equations

                      King A.C, Billingham J. and S.R. Otto, Differential Equations





















                                           LOVELY PROFESSIONAL UNIVERSITY                                   181
   183   184   185   186   187   188   189   190   191   192   193