Page 448 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 448

Unit 27: Volterra Integral Equations and Linear Differential Equations




          To convert the linear differential equation (1) into an integral equation we introduce a function  Notes
           (x) by the relation

                   n
                  d y   ( )
                        x
                  dx n                                                             ...(3)
          Integrating once we have by taking into account (2),
                       x
                  d n  1 y  x
                             u
                             ( )du
                  dx  n  1  0
                       0
                       x
                  d n  1 y ( )  n  1  x
                                   u
                          y 0      ( )du
                   dx n  1       0
          Integrating once more we have
                  d n  2  y ( )  y n  2  y n  1 x  x  du  u  (u  )du
                        x
                  dx n  2   0     0     0   0  1   1
                                       x                                           ...(4)
                                               u
                           y n 0  2  y n 0  1 x  (x  u ) ( )du
                                       0
          In general integrating up to n times we have
                          x 2   x  3     2 x  n  2  1 x  n  1  1   x
           y ( )  y  0  y x  y 0  y  0  ...  y  n 0  y  n 0        (x   ) u  n  1  ( )du ... ...(5)
                                                                            u
            x
                    0
                           2     3         n  2     (n  1)!  (n  1)!  0
          Writing (1) with the help of (3), (4) and (5) we have
                             1   x              2     1   x           
                                                                     u
                         x
                                                                   
                   x
                                     u
                   ( )   a 1 ( ) y n       ( )du  a 2  ( ) y n    xy  n      (x  u  ) ( )du  
                                             x
                                               
                                        
                           
                                                       0
                            0
                                                 0
                                 0                        0           
                                                     x 2      1  x
                                    a  ( ) y  n  3  xy n  2  y n  1  (x  ) u  2  ( )du  ...... ......
                                      x
                                                                         u
                                     3    0     0        0
                                                      2       2  0
                                   x  2       1 x  n  1  1    x
                      a  y  y x  y     ...... y  n             (x  ) n  n  1  ( )du  f  ( )
                                                                                x
                                                                        u
                       n  0  0    0         0                                      ...(6)
                                    2          (n  1)!  (n  1)!  0
          Defining
                                 n  1      n  2   n  1     n  3   n  2  x 2  n  2
                         x
                   x
                                        x
                              x
                  F ( )  f  ( )  a 1 ( )y 0  a 2 ( ) y 0  xy  0  a y  0  xy 0  y 0
                                                        3
                                                                       2
                                                              x  2     n  1 x n  1
                                              ...... a n  y 0  xy 0  y 0  ... y 0  ...(7)
                                                              2           (n  1)!
          and
                                            x
                                          a  ( )           (x  ) u  n  1
                     u
                           x
                  K ( , ) a 1 ( ) a 2  ( ) (x  u )  3  (x  u  ) 2  ... a n
                                 x
                    x
                                           2!               (x  1)!
                          n   (x   ) u  k   1
          or      K ( , )   a k                                                  ...(8)
                    x
                     u
                         k   1  (k   1)!
          Substituting (7) and (8) into (6) we get
                        x
                                       x
                             u
                                u
                   ( )   K ( , ) ( )du  F ( )                                      ...(9)
                           x
                   x
                        0
                                           LOVELY PROFESSIONAL UNIVERSITY                                   441
   443   444   445   446   447   448   449   450   451   452   453