Page 449 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 449

Differential and Integral Equation




                    Notes          So we have converted  a differential equation (1) into the Volterra integral  equation of the
                                   second kind with Kernel given by (8) and the function given by (7). The unknown function being
                                   given by (3).

                                          Example: Convert

                                                  y
                                                    x
                                          2y  ( )  3 ( )  2 ( )  4e  x  2cos x                             ...(1)
                                                         y
                                              x
                                                          x
                                   with y(0) = 4, y (0) =  1, into integral equation
                                   Let us put
                                          y (x) = G(x)                                                     ...(2)
                                   Integrating (1) with respect to x, we have
                                                  x
                                              x
                                                     u
                                          y  ( )   G ( )du
                                            x
                                              0   0
                                          dy         x
                                                        u
                                   or         y  (0)  G ( )du
                                          dx         0
                                          dy       x
                                                      u
                                                1   G ( )du                                                ...(3)
                                          dx       0
                                   Integrating with respect to x again we have
                                                      x    u
                                              x            1
                                            x
                                                              u
                                          y ( )   x    du   G ( )du
                                              0          1
                                                      0   0
                                                        x
                                                                u
                                                              G
                                            x
                                   or     y ( )  y (0)  x  (x  u ) ( )du
                                                        0
                                                      x
                                                            G
                                                              u
                                          y ( )  4  x  (x  u ) ( )du                                       ...(4)
                                            x
                                                      0
                                   Substituting from equations (2), (3) and (4) into (1) we have
                                                       x                 x
                                           G
                                          2 ( ) 3   1   G ( )du  2 4  x   (x  u ) ( )du  4e  x  2 cos x
                                                          u
                                                                                 u
                                                                               G
                                             x
                                                       0                 0
                                   Rearranging we have
                                                 x
                                          2 ( )   G ( )du  3  2(x  ) u  4e  x  2cos x  3  2 (4  ) x        ...(5)
                                             x
                                           G
                                                    u
                                                 0
                                                  x
                                                      u
                                                        G
                                                                 x
                                                          u
                                             x
                                           G
                                          2 ( )    K ( , ) ( )du  F ( )                                    ...(6)
                                                     x
                                                 0
                                   where
                                          K ( , )   3 2(x   ) u
                                            x
                                              u
                                                                                                           ...(7)
                                                      x
                                              x
                                            F ( )  4e    2cos x  5  2x
                                   So we get Volterra integral equation of the second kind.
                                   Self Assessment
                                   1.  Convert the linear differential equation
                                         3
                                        d y
                                               x
                                             6 ( )  0 with y (0)  4, y  (0)  3, y  (0)  2
                                              y
                                        dx 3
          442                               LOVELY PROFESSIONAL UNIVERSITY
   444   445   446   447   448   449   450   451   452   453   454