Page 112 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 112

Unit 9: Measure Spaces




          9.4 Review Questions                                                                  Notes

          1.   Let  be a  -algebra of subsets of  a  set X  and  let  Y be an  arbitrary subset  of X. Let
                = {A   Y : A   }. Show that is a  -algebra of subsets of Y.

          2.   Let (X,  ,  ) be a measure space. Show that for any E , E      we  have  the equality:
                                                            1  2
                 (E    E ) +   (E    E ) =   (E ) +   (E ).
                  1   2     1   2      1     2
          9.5 Further Readings




           Books      Paul Halmos, (1950). Measure Theory. Van Nostrand and Co.
                      Bogachev, V.I. (2007), Measure Theory, Berlin : Springer




          Online links  planetmath.org/measurable space.html
                      mathworld.wolfram.com > Calculus and Analysis > Measure Theory





















































                                           LOVELY PROFESSIONAL UNIVERSITY                                   105
   107   108   109   110   111   112   113   114   115   116   117