Page 13 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 13

Measure Theory and Functional Analysis




                    Notes          Thus, the sequence <f > converges to f  (x), a.e.
                                                    n
                                   Using Fatou’s Lemma, we have

                                                        b                 b
                                                         f (x) dx    Lim inf  f (x) dx                    … (ii)
                                                                  n        n
                                                       a                 a
                                                        b                 b      1
                                   Again        Lim inf  f (x) dx =  Lim inf n  f x  f(x) dx
                                                         n
                                                n      a          n       a     n
                                                                           b     1      b
                                                               =  Lim inf n  f x   dx    f(x) dx
                                                                  n             n
                                                                           a            a
                                   Putting t = x + (1/n), we get

                                                    b     1        b (1/n)     b (1/n)
                                                     f x    dx =       f(t)dt      f(x)dx
                                                    a     n       a (1/n)     a (1/n)

                                                                             [By the first property of definite integrals]
                                                        b                  b (1/n)     b
                                                Lim inf  f (x) dx =  Lim inf n  f(x) dx  f(x) dx
                                                n        n        n
                                                       a                   a (1/n)     a
                                                                           b (1/n)     a (1/n)
                                                               =  Lim inf n    f(x) dx     f(x) dx        … (iii)
                                                                  n        b           a

                                   Now extend the definition of f by assuming
                                                           f (x) = f (b),   x   [b, b + 1/n].

                                                     b (1/n)       b (1/n)    1
                                                         f(x) dx =     f(b) dx  f(b)
                                                    b             b           n
                                                            1
                                   Also f (a)   f (x), for x    a, a  , therefore
                                                            n
                                                     a (1/n)       a (1/n)    1
                                                         f(x) dx       f(a) dx  f(a)
                                                    a             a           n
                                                     a (1/n)       1
                                                  –      f(x) dx    f(a)
                                                    a              n
                                                        b                  b (1/n)       a (1/n)
                                   (iii)        Lim inf  f (x) dx =  Lim inf n  f(b) dx      f(x) dx
                                                         n
                                                n      a          n        b             a
                                                                              1    1
                                                                  Lim inf n f(b)     f(a)  f(b) f(a)
                                                                  n           n    n

                                   Thus from (ii), we get
                                                        b
                                                         f (x) dx   f (b) – f (a)
                                                       a
                                     f (x) is integrable and hence finite a.e. thus f is differentiable a.e.




          6                                 LOVELY PROFESSIONAL UNIVERSITY
   8   9   10   11   12   13   14   15   16   17   18