Page 14 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 14

Unit 1: Differentiation and Integration: Differentiation of Monotone Functions




                                                                                                Notes
                 Example: Let f be a function defined by f (0) = 0 and f (x) = x sin (1/x) for x   0. Find
            +
          D  f (0), D  f (0), D  f (0), D  f (0).
                         –
                  +            –
                                                                 1
                                                             hsin   0
                                             f(0 h) f(o)         h
                                 D  f (0) =  Lim         Lim
                                  +
                                         h  o    h       h  o   h
                                               1             1
                                       =  Lim sin  1, as 1 sin  1
                                         h  o  h             h
                                             f(0 h) f(0)       1
          Also                   D  f (0) =  Lim         Lim sin   1
                                  +      h  o    h       h  o  h
                                                                     1
                                                             ( h)sin    0
                                             f(0 h) f(0)            h
                                  –
                                 D  f (0) =  Lim         Lim
                                         h  o   0 h      h  o      h
                                                 1
                                       =  Lim sin   1
                                         h  o    h

                                             f(0 h) f(0)         1
          and                    D  f (0) =  Lim         Lim  sin     1
                                  –
                                         h  o     h      h  o    h
          Theorem: Let x be a Lebesgue point of a function f (t); then the indefinite integral

                                                x
                                   F (x) = F (a) +   f(t) dt
                                               a
          is differentiable at each point x and F  (x) = f (x).
          Proof: Given that x is a Lebesgue point of f (t), so that

                       1  x h
                   Lim      f(t) f(x) dt = 0                                      … (i)
                    h  o h  x
                            1  x h       1     x h    1
          Now                    f(x) dt =   f(x)  1 dt  f(x)[t] x h
                                                             x
                           h  x          h     x      h
                                         1
                                       =   f(x).h  f(x)
                                         h
                                         1  x h
          Thus                     f (x) =    f(x) dt                             … (ii)
                                         h  x
                                          x h       x
          Also            F (x + h) – F (x) =   f(t) dt  f(t) dt
                                          a         a
                                          x        x h       x       x h
                                       =   f(t) dt   f(t) dt  f(t)dt   f(t) dt
                                          a       x         a        x

                           F(x h) F(x)   1  x h
                                       =      f(t)dt                             … (iii)
                                h        h  x




                                           LOVELY PROFESSIONAL UNIVERSITY                                    7
   9   10   11   12   13   14   15   16   17   18   19