Page 227 - DSOC404_METHODOLOGY_OF_SOCIAL_RESEARCH_ENGLISH
P. 227

Unit–28: Measures of Dispersion: Standard Deviation




                Arranging the wages in ascending order:                                                    notes
                120,125, 135, 135, 135, 142, 146, 148, 150, 155, 160
                                                         n +  1
                \                          Median (Me)  =     element value
                                                           2
                Here                                n  =  11 (No. of labourers)
                                                         11 1
                                                           +
                \                                 Me  =        Element value;
                                                           2
                                                       12
                                                    =     = 6  Element Value
                                                            th
                                                        2
                6  Element Value = 142
                 th
                therefore, median (Me) = ` 142
                Keeping this median in mind, now we have to formulate the following table in order to compute the
                mean deviation.

                       Wages (in `) (X)      Median (Me)              (X – Mo) = (‘d’*)
                            120                  142                  (120 – 142) = 22
                            125                  142                  (125 – 142) = 17
                            135                  142                   (135 – 142) = 7
                            135                  142                   (135 – 142) = 7
                            135                  142                   (135 – 142) = 7
                            142                  142                   (142 – 142) = 0
                            146                  142                   (146 –142) = 4
                            148                  142                   (148 – 142) = 6
                            150                  142                   (150 – 142) = 8
                            155                  142                  (155 – 142) = 13
                            160                  142                  (160 – 142) = 18
                           n = 11                                        Sd = 109






                    Notes     there is no need to consider the + sign or – sign in this computation.

                Now using the method to calculate mean deviation, we will compute it as shown below:
                                                         S d
                                                    d  =
                                                          n
                Here,                              Sd   =  109
                                                    n  =  11 (No. of labourers)
                                                         109
                                                    d  =
                                                          11
                                                       =  9.91
                therefore, mean deviation (d) = ` 9.91






                                       loVely professional uniVersity                                              221
   222   223   224   225   226   227   228   229   230   231   232