Page 188 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 188

Unit 9: Game Theory




          Constraints  are,                                                                     Notes

                                                    1
                                   1
                         a X  + a X  + ……………. + a X   1
                            1
                         11  1  21  2             m1  m
                            1
                         a X  + a X  + ……………. + a X   1
                                                    1
                                   1
                         12  1  22  2             m2  m
                         .
                         .
                         .                                                        (2)
                         .
                         .
                             1
                         a  X  + a X  + …………… + a X   1
                                                    1
                                   1
                         ln  1  2n  2            mn  m
                            1
                         V x   0,;  i = 1 to m
                           i
          B’s strategies can be written as,
                         Min. v = Expected loss
          Subject to a Y  + a Y  + …………….. + a Y   V
                   11  1  12  2            ln  n
                         a Y  + a Y  + …………….. + a Y   V
                         21  1  22  2            2n  n
                         .
                         .
                         .                                                        (3)
                         .
                         a Y  + a Y  + ……………….. + a Y   V
                         m1  1  m2  2              mn  n
                         If Y  =                    V i = 1 to n,
                            1
                           i
          then the constraints can be written as,

                            1
                                   1
                                                 1
                         a Y  + a Y  + ……….. + a Y   1
                         11  1  12  2          ln  n
                            1
                         a Y  + a Y  + ……….. + a Y   1
                                                  1
                                   1
                         21  1  22  2          2n  n
                         .
                         .                                                      (4)
                                                  1
                         a Y  + a Y  + ……… + a Y   1
                                   1
                             1
                         m1  1  m2  2         mn  n
                         V yi  0; V i = 1 to n.
          The set of inequalities (2) is dual of set (4). Solving (4) by simplex method optimal solution is
          obtained.
                 Example: Formulate the following game as an LPP and obtain its solution:
                   A’s                               B’s Strategy
                 Strategy                        B1            B2             B3

                                    a1           8             9              3

                                    a2           2             5              6
                                    a3           4             1              7





                                           LOVELY PROFESSIONAL UNIVERSITY                                   183
   183   184   185   186   187   188   189   190   191   192   193