Page 70 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 70

Unit 3: Linear Programming Problem – Simplex Method




          Therefore, Maximize       Z = C X                                                     Notes
                                         B  B
                                      = (–4 × 2) + (–3 × 1)
                                      = –8 – 3
                                      = –11

          Therefore, Minimize       Z = 11

                 Example:

          Minimise    ‘Z’ = 3x  + 5x              [Subject to constraints]
                            1   2
                              2x  + 8x   40
                                1   2
                              3x  + 4x   50
                                1   2
                                 x , x   0                    [Non-negativity constraints]
                                 1  2
          Solution:
          Step 1: Convert the above minimization case into maximisation case.
                Therefore, Maximise Z = –3x  – 5x
                                       1   2
          Step 2: Convert the inequalities into equalities adding slack variables and artificial variables.

                     2x  + 8x  – x  + x  = 40
                       1   2  3   5
                     3x  + 4x  – x  + x  = 50
                       1   2  4   6
                Where, x  & x  are surplus variables and x  and x  are artificial variables.
                       3   4                      5    6
          Step 3: Bring the objective function into a standard form.

                Maximise ‘Z’ = – 3x  – 5x  – 0x  + 0x  – Mx  – Mx
                               1    2   3   4    5    6
          Step 4: Fit the data into a matrix form.
                                              x  1  
                                               
                    y 1  y 2  S 1  S  2  a  1  a  2      x  2  
                     x  x  x  x  x   x      x      40 
                A      1  2  3  4  5  6    X     3     B      
                    2  8  1  0   1  0       x  4     50 
                                           
                     3  4  0  1  0  1       x  5  
                                               
                                               x  6  

          Step 5: First iteration of Simplex Method.

             BV    CB     XB      y1       y2      S1   S2   a1   a2     Min. Ratio
              a1   –M     40       2        8      –1   0    1    0     40/8 = 5 (KR)
              a2   –M     50       3        4      0    –1   0    1      50/4 = 12.5
                          Zj      –5M     –12M
                          Cj      –3       –5
                         Zj – Cj   –5M + 3   12M + 5

          Therefore,               Z = C X
                                        B  B
                                     = (40x – M) + (50x – M)






                                           LOVELY PROFESSIONAL UNIVERSITY                                   65
   65   66   67   68   69   70   71   72   73   74   75