Page 72 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 72
Unit 3: Linear Programming Problem – Simplex Method
Step 3: Bring the objective function into a standard form. Notes
Maximise ‘Z’ = – 12x – 20x – x + x – Mx – Mx
1 2 3 4 5 6
Step 4: Fit the data into a matrix form.
x 1
Y 1 Y 2 S 1 S 2 a 1 a 2 x 2
x x x x x x x 100
A 1 2 3 4 5 6 X 3 B
6 8 1 0 1 0 x 120
4
7 12 0 1 0 1 x 5
x
6
Step 5: First iteration of Simplex Method.
BV CB XB Y1 Y2 S1 S2 a1 a2 Min. Ratio
a1 –M 100 6 8 –1 0 1 0 100/8 = 12.5
A2 –M 120 7 12 0 –1 0 1 120/12 = 10(KR)
Zj –100M –120M
Cj 12 –20
Zj – Cj –100M + 12 120M+20
( KC)
Therefore, Z = C X
B B
= –100M – 120M
= –220M
Step 6: Second iteration of Simplex Method.
B CB XB Y1 Y2 S1 S a1 a2 Min. Ratio
V 2
a1 –M 100–10 (8) = 20 6–0.5(8) = 1.33 8–1(8) = 0 – – – – 20/1.33 = 15.04(KR)
y2 –20 120/12 = 10 7/12 = 0.58 12/12 = 1 – – – – 10/0.58 = 17.24
Zj –1.33M–11.6–12 –20
Cj –20
Zj – Cj –1.33M + 0.4 0
( KC)
Therefore, Z = C X
B B
= (–M × 20) + (–20 × 10)
= –20M – 200
Step 7: Third iteration of Simplex Method.
BV CB XB Y1 Y2 S1 S2 a1 a2 Min.
Ratio
y1 –12 20/1.33 = 15.04 1.33/1.33 = 1 0 – – – – ––
y2 –20 10 – 15.04 (90.58) = 1.28 0.58–1(0.58) = 0 1 – – – – ––
Zj –12 –20
Cj –12 –20
Zj – Cj 0 0
Z = C X
B B
LOVELY PROFESSIONAL UNIVERSITY 67