Page 73 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 73

Operations Research




                    Notes                                      = (–12 × 15.04) + (–20 × 1.28)
                                                               = –180.48 – 25.6
                                   Therefore, Maximise       Z = – 206.08
                                   Therefore, Minimise       Z = 206.08


                                          Example: Solve the following LPP using Simplex Method.
                                   Maximise ‘Z’ = x  + 1.5x  + 2x  + 5x       [Subject to constraints]
                                                1     2   3   4
                                               3x  + 2x  + 4x  + x   6
                                                 1    2   3  4
                                                2x  + x  + x  + 5x   4
                                                  1   2  3   4
                                               2x  + 6x  – 8x  + 4x  = 0
                                                1    2   3   4
                                               x  + 3x  – 4x  + 3x  = 0
                                                1    2   3   4
                                               Where, x , x , x , x   0
                                                      1  2  3  4
                                   Solution:
                                   Step 1: Convert the inequalities into equalities by adding slack variables and surplus variables.
                                                   3x  + 2x  + 4x  + x  + x  = 6
                                                     1   2    3  4   5
                                                    2x  + x  + x  + 5x  + x  = 4
                                                      1  2   3   4   6
                                                  2x  + 6x  – 8x  + 4x  + x  = 0
                                                    1    2   3   4   7
                                                   x  + 3x  – 4x  + 3x  + x  = 0
                                                    1    2   3   4   8
                                           Where, x  and x  are slack variables and x  and x  are artificial variables.
                                                  5    6                    7     8
                                   Step 2: The standard form of objective function.

                                           Maximise ‘Z’ = x  + 1.5x  + 2x  + 5x  ± 0x  ± 0x  – Mx  – Mx
                                                        1    2    3   4   5    6    7    8
                                   Step 3: Fit the data into a matrix form.
                                                                                      x 1  
                                                                                       
                                                     Y 1  Y 2  Y 3  y  4  S 1  S 2  a 1  a 2     x 2  
                                                                                    x  
                                                                                               6
                                                      x  1  x 2  x  3  x  4  x 5  x 6  x 7  x  8      3     
                                                                                               4
                                                     3  2   4  1   1  0   0  0      x        
                                                 A                              X       4      B     
                                                                                               0
                                                      2  1  1  5   0  1   0  0      x 5     
                                                                                               
                                                      2  6  8  4  0  0   1  0      x      
                                                                                               0
                                                                                     6       
                                                                                     
                                                      1  3  4  3  0  0   0  1      x 7  
                                                                                      x  
                                                                                       8  
                                   Step 4:  First iteration of Simplex Method.
                                     BV   CB     XB     Y1      Y2      Y3      Y4    S1   S2   a1   a2   Min. Ratio
                                     S1    0     6       3      2        4       1    1   0   0   0   6/2 = 3
                                     S2    0     4       2      1        1       5    0   1   0   0   4/1 = 4
                                     a1   –M     0       2      6       –8       4    0   0   1   0   0/6 = 0(KR)?
                                     a2   –M     0       1      3       –4       3    0   0   0   1   0/3 = 0
                                                 Zj     –3M    –9M      12M     –7M
                                                 Cj      1      1.5      2       5
                                                Zj – Cj   –3M–1   –9M–1.5   +12M–2   –7M–5
                                                               ( KC)




          68                                LOVELY PROFESSIONAL UNIVERSITY
   68   69   70   71   72   73   74   75   76   77   78