Page 143 - DMTH202_BASIC_MATHEMATICS_II
P. 143

Basic Mathematics-II




                    Notes          which on simplification gives
                                          3y  + 4xy – 6x  – 12y + 14x = c.
                                            2
                                                    2
                                          Example:
                                        dy  6x   2y   7
                                   Solve                                                                  …(1)
                                                y
                                        dx  3x   4
                                   Solution:

                                        a  b
                                   Here     .
                                        A  B
                                                             dy  dv
                                   So putting 3x – y = v, so that  3    ,
                                                             dx  dx
                                    (1) becomes

                                          dv     2v  7  v   19
                                                    
                                              3
                                          dx     v   4  v   4
                                              v  4        15  
                                                       
                                         dx      dv   1     dv
                                              v   19    v   19 
                                   Integrating, we get

                                          x + c = v – 15 log(v + 19)
                                   On restoring the value of v, we get
                                          2x – y – 15 log (v + 19) = c,
                                   which is the required solution.


                                          Example:

                                        dy  2x   3y  4
                                   Solve           ,   given that y = 1, when x = 1.
                                                y
                                        dx  4x    3
                                   Solution:

                                   Putting x = X + h and y = Y + k, the given equation becomes
                                                  dY    2 X h   3  Y  k  4
                                                         
                                                                      ,
                                                  dX     4 X h   Y  k  3
                                                             
                                                          
                                                     2X   3Y   2h   3k   4
                                                                                                         ….(1)
                                                                 k
                                                      4X  Y   4h    3
                                   Choosing h and k such that (1) becomes homogeneous,
                                   i.e., 2h + 3k – 4 = 0 and 4h + k – 3 = 0.

                                        1
                                     h    ,k   1.
                                        2




          138                               LOVELY PROFESSIONAL UNIVERSITY
   138   139   140   141   142   143   144   145   146   147   148