Page 144 - DMTH202_BASIC_MATHEMATICS_II
P. 144
Unit 10: Homogeneous Equations
Notes
dY 2X 3Y
Then (1) becomes .
df 4X Y
dY dv
v
Putting Y = vX, so that X .
dX dX
dv 2 3v
v X
dX 4 v
v
dv 2 3v 2 v 2
v
or X
dX 4 v 4 v
v 4 dX
or dv
1v 2v X
2 5 1
or dv dx
3 2v 3 1v x
Integrating, we have
2 5
log 2v log 1v log X logC
3 3
Y
Replacing v by , we have
X
Y 2X Y X
3logX 3logC 2log 5log
X X
On restoring the value of x & y, we get
1
5log y x 2log 2y x 2 3log c .
2
1 5
y x
or 2 2 c 3 ;
2y x 2
1
3
Putting y = 1 at x = 1, we have c .
25
1 5
y x
Thus 2 1
(y 2x 2) 2 2 5
1
5
2
or (y+2x–2) = –2 (y–x ) 5
2
= (2x–2y+1) 5
2
or (y+2x–2) = (2x–2y+1) 5
which is the required particular solution.
LOVELY PROFESSIONAL UNIVERSITY 139