Page 146 - DMTH202_BASIC_MATHEMATICS_II
P. 146

Unit 10: Homogeneous Equations




                                                                                                Notes
                                            dy  ax   by c
                                                      
              A differential equation of the form       can be reduced to the homogeneous
                                                      
                                            dx  Ax   By C
                         a  b
               form when     .
                         A  B
                                            dy  ax   by c
                                                      
              A differential equation of the form       can be reduced to the homogeneous
                                            dx  Ax   By C
                                                      
                         a  b
               form when     , i.e., aB – bA = 0.
                         A  B
          10.4 Keywords


          Homogeneous Equation: Homogeneous equation is just an equation where both coefficients of
          the differentials dx and dy are homogeneous.
          Homogeneous Functions: Homogeneous functions are defined as functions where the sums of
          the powers of each term are the same.

          10.5 Review Questions

          Solve the  following differential  equations:
                    2
                2
          1.   (x  + y )dx = 2xydy
                                   3
          2.    x ydy + (x  + x y– 2xy  – y ) dx = 0
                       3
                                2
                2
                          2
          3.   (1 + e ) dx + e  (1 – x/y) dy = 0
                          x/y
                   x/y
          4.   y(8x – 9y) dx + 2x(x – 3y) dy = 0
          5.   (x  – 2xy + 3y ) dx + (y  + 6xy – x )dy = 0
                         2
                2
                                        2
                                2
          6.   (y dx + x dy) x cos (y/x) = (xdy – ydx) y sin (y/x)
                     3
                2
          7.   x yd – (x  + y ) dy = 0
                         3
                               2
                           2
          8.   xdy   ydx   x  y dx given that y = 1 when   3x
                     y   2 y        2 y 
                                          
                             
          9.    x tan     y sec     dx   x sec     dy   0
                     x      x         x 
                       
                        
          10.  xdx   sin 2 y   ydx   xdy    0
                         x 
               dy       y
          11.  dx    x   ye  2( / )
                          x
                           y
          12.    2x y   dx     2x  y  3  dy  0.
          13.    1x y   dx    2x  2y  3  dy  0.






                                           LOVELY PROFESSIONAL UNIVERSITY                                   141
   141   142   143   144   145   146   147   148   149   150   151