Page 150 - DMTH202_BASIC_MATHEMATICS_II
P. 150

Unit 11: Linear Differential Equations of First Order




           The solution of (1) is                                                              Notes
                             4x 2     2
                                       
                        2
                  y  .   1 x      .   1 x dx c
                             1 x 2
                            4  3
                        2
                                c
          or      y  .   1 x     x   .
                            3
          which is the required solution.
               !

             Caution  The system is said to be consistent if it contains a solution or else the system is said
             to be inconsistent.


                 Example:
                                  
                             1
                               
          Solve   1 y 2   dx     tan y x dy .
          Solution:
                                        -1
          Since the equation involves a term tan  dy. So it is not linear in y. However, the equation is linear
          in x, so that
                          
                   1 y  2  dx xdy   tan  1  y dy                             .....(1)
                                1
                  dx   1     tan y
          or            2  x    2
                  dy  1  y   1  y
                                     1
                       1          tan y
          Here    P     2  ,  Q     2  .
                     1  y         1  y

                              1
                               dy
                 I . .   e Pdy   e  1 y 2   e  (tan  1  ) y  .
                   F
           The solution of (1) is
                                     1
                         xe (tan 1  ) y     tan y  . e  tan  1   y dy   c  .....(2)
                                   1  y 2

          Now solving

                     tan 1  y  1
                  I       e tan  ydy
                      1   y  2
          Putting t = tan-1y

                       1
                 dt =   2 dy
                     1   y
                      t
          or      I   te dt
                     = te – e t
                      t



                                           LOVELY PROFESSIONAL UNIVERSITY                                   145
   145   146   147   148   149   150   151   152   153   154   155