Page 151 - DMTH202_BASIC_MATHEMATICS_II
P. 151

Basic Mathematics-II




                    Notes          Thus (2) becomes
                                              -1     -1
                                                           -1
                                          x e tan y       e tan y   (tan y -1 )    c
                                                            -1
                                                  -1
                                   or        x     (tan y – 1)     ce tan y ,
                                   which is the required solution.


                                          Example:
                                                    2
                                   Solve x (1–x ) dy + (2x y–y-ax ) dx = 0.
                                            2
                                                         3
                                   Solution:
                                   The given equation is equivalent to
                                                  dy  2x  2   1  ax 2
                                                           y      .                                    ……(1)
                                                  dx x (1   x 2  )  1  x 2

                                             2x 2   1   ax 2
                                   Here P =      2  , Q    2  .
                                            x (1  x  )  1   x

                                                      2              2
                                                    2x   1     1  2x
                                                       2  dx        dx
                                              pdx   (1x   x   )  ( x x 2   1)
                                        F
                                      I . .   e  e        e
                                                1   2x 2
                                                        dx
                                               ( x x   1) (x   1)
                                           e

                                                1  1        1   
                                                               dx
                                               x  2 ( x  1)  2 ( x  1)  
                                          e                     
                                                  1   
                                            log       
                                                 x x 2  1    1
                                           e                 .
                                                         x x 2  1

                                   Thus the solution of (1) is

                                               1       ax 2   1
                                           . y         2  .      dx   c
                                            x x 2   1  1  x  x x 2  1

                                                   x
                                            c
                                            a      3  dx
                                                 (1  x  2 )  2
                                               a  dt     2
                                                3  , (t  x   1)
                                            c
                                               2  t  2
                                               a    1
                                            c
                                                   t
                                              . 2( )  2
                                               2


          146                               LOVELY PROFESSIONAL UNIVERSITY
   146   147   148   149   150   151   152   153   154   155   156