Page 106 - DMTH201_Basic Mathematics-1
P. 106

Unit 4: Determinants




                                                                                                Notes
                 Example

                    a 2  bc b 2  ca c 2  ab  a b c   2
          Prove that  c 2  ab a 2  bc b 2  ca  c  a b
                    b 2  ca c  2  ab a 2  bc  b c  a

          Solution:

                                                                a b c
          Let A, B and C be the cofactors of a, b and c respectively in   c  a b . We note that the
                                                                b c   a
          determinant on the L.H.S. of the given equation is a determinant of cofactors.


                               a 2  bc b 2  ca c 2  ab  A B    C
          Let               = c 2  ab a 2  bc b 2  ca   C   A B
                           1
                               b 2  ca c 2  ab a 2  bc  B   C  A


                               A B    C a b c
          Then              = C   A B c     a b
                         1
                               B  C   A b c    a


                               aA bB cC cA aB bC bA cB aC                   0  0
                            = aC bA cB cC        aA bB bC cA aB         0      0
                               aB bC cA cB aC bA bB cC             aA   0   0

                     3
                             2
          Thus,    =   or   =  . Hence the result.
                1        1
          Note: The solution of the above example is based on property (7) of determinants.

                 Example

                    2bc a 2     c 2      b 2    a b c   2
          Prove that   c  2  2ac b  2    a 2    b c    a  .
                      b 2       a 2   2ab c  2  c   a b

          Solution:

                                              2
                                      a b c       a b c a b c
          We can write                b c    a  = b c    a b c   a
                                      c  a b      c   a b c   a b



                              a b c    a c b      2bc a  2    c 2       b 2
                           =  b c   a  b a c  =      c 2    2ac b 2     a 2
                              c  a b   c b a         b 2      a 2    2ab c 2




                                           LOVELY PROFESSIONAL UNIVERSITY                                   99
   101   102   103   104   105   106   107   108   109   110   111